232 research outputs found

    Excluding pairs of tournaments

    Full text link
    The Erd\H{o}s-Hajnal conjecture states that for every given undirected graph HH there exists a constant c(H)>0c(H)>0 such that every graph GG that does not contain HH as an induced subgraph contains a clique or a stable set of size at least ∣V(G)∣c(H)|V(G)|^{c(H)}. The conjecture is still open. Its equivalent directed version states that for every given tournament HH there exists a constant c(H)>0c(H)>0 such that every HH-free tournament TT contains a transitive subtournament of order at least ∣V(T)∣c(H)|V(T)|^{c(H)}. We prove in this paper that {H1,H2}\{H_{1},H_{2}\}-free tournaments TT contain transitive subtournaments of size at least ∣V(T)∣c(H1,H2)|V(T)|^{c(H_{1},H_{2})} for some c(H1,H2)>0c(H_{1},H_{2})>0 and several pairs of tournaments: H1H_{1}, H2H_{2}. In particular we prove that {H,Hc}\{H,H^{c}\}-freeness implies existence of the polynomial-size transitive subtournaments for several tournaments HH for which the conjecture is still open (HcH^{c} stands for the \textit{complement of HH}). To the best of our knowledge these are first nontrivial results of this type

    Graphs with few 3-cliques and 3-anticliques are 3-universal

    Full text link
    For given integers k, l we ask whether every large graph with a sufficiently small number of k-cliques and k-anticliques must contain an induced copy of every l-vertex graph. Here we prove this claim for k=l=3 with a sharp bound. A similar phenomenon is established as well for tournaments with k=l=4.Comment: 12 pages, 1 figur

    Hypergraph Ramsey numbers

    Get PDF
    The Ramsey number r_k(s,n) is the minimum N such that every red-blue coloring of the k-tuples of an N-element set contains either a red set of size s or a blue set of size n, where a set is called red (blue) if all k-tuples from this set are red (blue). In this paper we obtain new estimates for several basic hypergraph Ramsey problems. We give a new upper bound for r_k(s,n) for k \geq 3 and s fixed. In particular, we show that r_3(s,n) \leq 2^{n^{s-2}\log n}, which improves by a factor of n^{s-2}/ polylog n the exponent of the previous upper bound of Erdos and Rado from 1952. We also obtain a new lower bound for these numbers, showing that there are constants c_1,c_2>0 such that r_3(s,n) \geq 2^{c_1 sn \log (n/s)} for all 4 \leq s \leq c_2n. When s is a constant, it gives the first superexponential lower bound for r_3(s,n), answering an open question posed by Erdos and Hajnal in 1972. Next, we consider the 3-color Ramsey number r_3(n,n,n), which is the minimum N such that every 3-coloring of the triples of an N-element set contains a monochromatic set of size n. Improving another old result of Erdos and Hajnal, we show that r_3(n,n,n) \geq 2^{n^{c \log n}}. Finally, we make some progress on related hypergraph Ramsey-type problems

    Transitive Triangle Tilings in Oriented Graphs

    Get PDF
    In this paper, we prove an analogue of Corr\'adi and Hajnal's classical theorem. There exists n0n_0 such that for every n∈3Zn \in 3\mathbb{Z} when nβ‰₯n0n \ge n_0 the following holds. If GG is an oriented graph on nn vertices and every vertex has both indegree and outdegree at least 7n/187n/18, then GG contains a perfect transitive triangle tiling, which is a collection of vertex-disjoint transitive triangles covering every vertex of GG. This result is best possible, as, for every n∈3Zn \in 3\mathbb{Z}, there exists an oriented graph GG on nn vertices without a perfect transitive triangle tiling in which every vertex has both indegree and outdegree at least ⌈7n/18βŒ‰βˆ’1.\lceil 7n/18\rceil - 1.Comment: To appear in Journal of Combinatorial Theory, Series B (JCTB
    • …
    corecore