49 research outputs found

    Merging Combinatorial Design and Optimization: the Oberwolfach Problem

    Get PDF
    The Oberwolfach Problem OP(F)OP(F), posed by Gerhard Ringel in 1967, is a paradigmatic Combinatorial Design problem asking whether the complete graph KvK_v decomposes into edge-disjoint copies of a 22-regular graph FF of order vv. In Combinatorial Design Theory, so-called difference methods represent a well-known solution technique and construct solutions in infinitely many cases exploiting symmetric and balanced structures. This approach reduces the problem to finding a well-structured 22-factor which allows us to build solutions that we call 11- or 22-rotational according to their symmetries. We tackle OPOP by modeling difference methods with Optimization tools, specifically Constraint Programming (CPCP) and Integer Programming (IPIP), and correspondingly solve instances with up to v=120v=120 within 60s60s. In particular, we model the 22-rotational method by solving in cascade two subproblems, namely the binary and group labeling, respectively. A polynomial-time algorithm solves the binary labeling, while CPCP tackles the group labeling. Furthermore, we prov ide necessary conditions for the existence of some 11-rotational solutions which stem from computational results. This paper shows thereby that both theoretical and empirical results may arise from the interaction between Combinatorial Design Theory and Operation Research

    A constructive solution to the Oberwolfach Problem with a large cycle

    Full text link
    For every 22-regular graph FF of order vv, the Oberwolfach problem OP(F)OP(F) asks whether there is a 22-factorization of KvK_v (vv odd) or KvK_v minus a 11-factor (vv even) into copies of FF. Posed by Ringel in 1967 and extensively studied ever since, this problem is still open. In this paper we construct solutions to OP(F)OP(F) whenever FF contains a cycle of length greater than an explicit lower bound. Our constructions combine the amalgamation-detachment technique with methods aimed at building 22-factorizations with an automorphism group having a nearly-regular action on the vertex-set.Comment: 11 page

    Thresholds for Latin squares and Steiner triple systems: Bounds within a logarithmic factor

    Get PDF
    We prove that for nNn \in \mathbb N and an absolute constant CC, if pClog2n/np \geq C\log^2 n / n and Li,j[n]L_{i,j} \subseteq [n] is a random subset of [n][n] where each k[n]k\in [n] is included in Li,jL_{i,j} independently with probability pp for each i,j[n]i, j\in [n], then asymptotically almost surely there is an order-nn Latin square in which the entry in the iith row and jjth column lies in Li,jL_{i,j}. The problem of determining the threshold probability for the existence of an order-nn Latin square was raised independently by Johansson, by Luria and Simkin, and by Casselgren and H{\"a}ggkvist; our result provides an upper bound which is tight up to a factor of logn\log n and strengthens the bound recently obtained by Sah, Sawhney, and Simkin. We also prove analogous results for Steiner triple systems and 11-factorizations of complete graphs, and moreover, we show that each of these thresholds is at most the threshold for the existence of a 11-factorization of a nearly complete regular bipartite graph.Comment: 32 pages, 1 figure. Final version, to appear in Transactions of the AM

    Post-critical set and non existence of preserved meromorphic two-forms

    Full text link
    We present a family of birational transformations in CP2 CP_2 depending on two, or three, parameters which does not, generically, preserve meromorphic two-forms. With the introduction of the orbit of the critical set (vanishing condition of the Jacobian), also called ``post-critical set'', we get some new structures, some "non-analytic" two-form which reduce to meromorphic two-forms for particular subvarieties in the parameter space. On these subvarieties, the iterates of the critical set have a polynomial growth in the \emph{degrees of the parameters}, while one has an exponential growth out of these subspaces. The analysis of our birational transformation in CP2 CP_2 is first carried out using Diller-Favre criterion in order to find the complexity reduction of the mapping. The integrable cases are found. The identification between the complexity growth and the topological entropy is, one more time, verified. We perform plots of the post-critical set, as well as calculations of Lyapunov exponents for many orbits, confirming that generically no meromorphic two-form can be preserved for this mapping. These birational transformations in CP2 CP_2, which, generically, do not preserve any meromorphic two-form, are extremely similar to other birational transformations we previously studied, which do preserve meromorphic two-forms. We note that these two sets of birational transformations exhibit totally similar results as far as topological complexity is concerned, but drastically different results as far as a more ``probabilistic'' approach of dynamical systems is concerned (Lyapunov exponents). With these examples we see that the existence of a preserved meromorphic two-form explains most of the (numerical) discrepancy between the topological and probabilistic approach of dynamical systems.Comment: 34 pages, 7 figure

    On the minisymposium problem

    Full text link
    The generalized Oberwolfach problem asks for a factorization of the complete graph KvK_v into prescribed 22-factors and at most a 11-factor. When all 22-factors are pairwise isomorphic and vv is odd, we have the classic Oberwolfach problem, which was originally stated as a seating problem: given vv attendees at a conference with tt circular tables such that the iith table seats aia_i people and i=1tai=v{\sum_{i=1}^t a_i = v}, find a seating arrangement over the v12\frac{v-1}{2} days of the conference, so that every person sits next to each other person exactly once. In this paper we introduce the related {\em minisymposium problem}, which requires a solution to the generalized Oberwolfach problem on vv vertices that contains a subsystem on mm vertices. That is, the decomposition restricted to the required mm vertices is a solution to the generalized Oberwolfach problem on mm vertices. In the seating context above, the larger conference contains a minisymposium of mm participants, and we also require that pairs of these mm participants be seated next to each other for m12\left\lfloor\frac{m-1}{2}\right\rfloor of the days. When the cycles are as long as possible, i.e.\ vv, mm and vmv-m, a flexible method of Hilton and Johnson provides a solution. We use this result to provide further solutions when vm2(mod4)v \equiv m \equiv 2 \pmod 4 and all cycle lengths are even. In addition, we provide extensive results in the case where all cycle lengths are equal to kk, solving all cases when mvm\mid v, except possibly when kk is odd and vv is even.Comment: 25 page

    Resolution of the Oberwolfach problem

    Get PDF
    The Oberwolfach problem, posed by Ringel in 1967, asks for a decomposition of K2n+1K_{2n+1} into edge-disjoint copies of a given 22-factor. We show that this can be achieved for all large nn. We actually prove a significantly more general result, which allows for decompositions into more general types of factors. In particular, this also resolves the Hamilton-Waterloo problem for large nn.Comment: 28 page
    corecore