1,260 research outputs found

    Tilings in vertex ordered graphs

    Get PDF
    Over recent years there has been much interest in both Tur\'an and Ramsey properties of vertex ordered graphs. In this paper we initiate the study of embedding spanning structures into vertex ordered graphs. In particular, we introduce a general framework for approaching the problem of determining the minimum degree threshold for forcing a perfect HH-tiling in an ordered graph. In the (unordered) graph setting, this problem was resolved by K\"uhn and Osthus [The minimum degree threshold for perfect graph packings, Combinatorica, 2009]. We use our general framework to resolve the perfect HH-tiling problem for all ordered graphs HH of interval chromatic number 22. Already in this restricted setting the class of extremal examples is richer than in the unordered graph problem. In the process of proving our results, novel approaches to both the regularity and absorbing methods are developed.Comment: 22 pages, updated to address referee comment

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Perfect packings with complete graphs minus an edge

    Get PDF
    Let K_r^- denote the graph obtained from K_r by deleting one edge. We show that for every integer r\ge 4 there exists an integer n_0=n_0(r) such that every graph G whose order n\ge n_0 is divisible by r and whose minimum degree is at least (1-1/chi_{cr}(K_r^-))n contains a perfect K_r^- packing, i.e. a collection of disjoint copies of K_r^- which covers all vertices of G. Here chi_{cr}(K_r^-)=r(r-2)/(r-1) is the critical chromatic number of K_r^-. The bound on the minimum degree is best possible and confirms a conjecture of Kawarabayashi for large n

    On perfect packings in dense graphs

    Get PDF
    We say that a graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. We consider various problems concerning perfect H-packings: Given positive integers n, r, D, we characterise the edge density threshold that ensures a perfect K_r-packing in any graph G on n vertices and with minimum degree at least D. We also give two conjectures concerning degree sequence conditions which force a graph to contain a perfect H-packing. Other related embedding problems are also considered. Indeed, we give a structural result concerning K_r-free graphs that satisfy a certain degree sequence condition.Comment: 18 pages, 1 figure. Electronic Journal of Combinatorics 20(1) (2013) #P57. This version contains an open problem sectio

    Perfect Packings in Quasirandom Hypergraphs II

    Full text link
    For each of the notions of hypergraph quasirandomness that have been studied, we identify a large class of hypergraphs F so that every quasirandom hypergraph H admits a perfect F-packing. An informal statement of a special case of our general result for 3-uniform hypergraphs is as follows. Fix an integer r >= 4 and 0<p<1. Suppose that H is an n-vertex triple system with r|n and the following two properties: * for every graph G with V(G)=V(H), at least p proportion of the triangles in G are also edges of H, * for every vertex x of H, the link graph of x is a quasirandom graph with density at least p. Then H has a perfect Kr(3)K_r^{(3)}-packing. Moreover, we show that neither hypotheses above can be weakened, so in this sense our result is tight. A similar conclusion for this special case can be proved by Keevash's hypergraph blowup lemma, with a slightly stronger hypothesis on H.Comment: 17 page

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Tilings in randomly perturbed dense graphs

    Get PDF
    A perfect HH-tiling in a graph GG is a collection of vertex-disjoint copies of a graph HH in GG that together cover all the vertices in GG. In this paper we investigate perfect HH-tilings in a random graph model introduced by Bohman, Frieze and Martin in which one starts with a dense graph and then adds mm random edges to it. Specifically, for any fixed graph HH, we determine the number of random edges required to add to an arbitrary graph of linear minimum degree in order to ensure the resulting graph contains a perfect HH-tiling with high probability. Our proof utilises Szemer\'edi's Regularity lemma as well as a special case of a result of Koml\'os concerning almost perfect HH-tilings in dense graphs.Comment: 19 pages, to appear in CP
    • …
    corecore