3 research outputs found

    A Mixed Integer Programming Model to Minimize Fuel Consumption in Freight Train Operation

    Get PDF
    Fuel consumption is among the most important criteria in train operations. Considerable efforts have been made to identify optimal speed for enhanced fuel economy. The train speed control is achieved through switching the power notches, which sets constant level of fuel supply to the engine in a typical diesel-electric locomotive. A global optimal speed, however, cannot be considered appropriate due to the localized variations in the track gradient and curvature, apart from the variations in the load. An efficient train operation also requires the train completes its journey within a given travel time. This study aims at determining optimal train speeds to minimize the total fuel consumption in completing the journey, while considering the local variations in the track geometry and other properties. A nonlinear mixed integer programming model is formulated to solve the considered problem using an off-the-shelf optimization software package. A multiphase-steps improved method is proposed for solving the considered problem more effectively. Numerical examples are presented to illustrate the developed model and solution method

    Nonlinear programming methods based on closed-form expressions for optimal train control

    Get PDF
    This paper proposes a novel approach to solve the complex optimal train control problems that so far cannot be perfectly tackled by the existing methods, including the optimal control of a fleet of interacting trains, and the optimal train control involving scheduling. By dividing the track into subsections with constant speed limit and constant gradient, and assuming the train’s running resistance to be a quadratic function of speed, two different methods are proposed to solve the problems of interest. The first method assumes an operation sequence of maximum traction – speedholding – coasting – maximum braking on each subsection of the track. To maintain the mathematical tractability, the maximum tractive and maximum braking functions are restricted to be decreasing and piecewise-quadratic, based on which the terminal speed, travel distance and energy consumption of each operation can be calculated in a closed-form, given the initial speed and time duration of that operation. With these closed-form expressions, the optimal train control problem is formulated and solved as a nonlinear programming problem. To allow more flexible forms of maximum tractive and maximum braking forces, the second method applies a constant force on each subsection. Performance of these two methods is compared through a case study of the classic single-train control on a single journey. The proposed methods are further utilised to formulate more complex optimal train control problems, including scheduling a subway line while taking train control into account, and simultaneously optimising the control of a leader-follower train pair under fixed- and moving-block signalling systems

    Optimierung des Betriebsverhaltens und der Konfiguration von dieselelektrischen Lokomotiven

    Get PDF
    Diese Arbeit entstand an der Professur für Fahrzeugmodellierung und –simulation der TU Dresden in Zusammenarbeit mit der Fa. Bombardier Transportation („Bombardier Center of Competence“). In einem Teilprojekt dieser Kooperation wird die Einführung technischer Funktionen und Systeme zur Energieeinsparung bei Lokomotiven untersucht. Die Nutzung von Speichertechnologien ist neben der Abwärmenutzung und der energiesparenden Fahrweise die effizienteste Maßnahme zur Senkung des Kraftstoffverbrauchs bei Dieselfahrzeugen. Zusätzlich zur Rekuperation von Bremsarbeit können die Funktionen Lastpunktverschiebung und emissionsfreier Betrieb mit Hilfe eines Energiespeichers realisiert werden. Der Einsatz elektrischer Energiespeicher erweist sich als geeignet für dieselelektrische Schienenfahrzeuge im Personenverkehr, da diese durch die bereits vorhandenen elektrischen Antriebskomponenten relativ einfach zu hybridisieren sind und eine nutzungsgerechte Speicherauslegung aufgrund weitgehend bekannter Fahraufgaben möglich ist. In der Arbeit wird ein durchgängiges Verfahren zur Auslegung von dieselelektrischen Lokomotiven mit Energiespeichern im Personenverkehr beschrieben. Im Fokus liegt dabei der Einsatz von Optimierungsalgorithmen zur Verbesserung des Generatorsystems und des Einsatzes von elektrischen Energiespeichern im Hinblick auf den Kraftstoffverbrauch und die weiteren Anteile der Lebenszykluskosten. Das im Rahmen der Arbeit erstellte Programm zur energetischen Simulation bildet die Basis zur Untersuchung verschiedener Strategien für die Fahrtgestaltung unter Berücksichtigung der Fahrzeitreserven, den Betrieb des Energiespeichers und der Steuerung von Anlagen mit mehreren Dieselmotorgeneratorsätzen. Neben der Nutzung regelbasierter Strategien werden dabei auch vorausschauende Betriebsstrategien eingesetzt, welche die Möglichkeiten der bei Schienenfahrzeugen im Vorfeld bekannten Streckengeschwindigkeit und -topologie nutzen. Die dafür angewandten Methoden sind die Dynamische Programmierung nach BELLMANN und der äquivalenzkostenbasierte Betrieb. Die Optimierung der Fahrzeugkonfiguration wird durch einen Programmbaustein realisiert, welcher unter Berücksichtigung der Lokkonfiguration und der Energiesimulation für ein vorgegebenes Streckenprofil die Verbrauchs-, Instandhaltungs- und Anschaffungskosten für das Fahrzeug berechnet
    corecore