168 research outputs found

    Multicore-optimized wavefront diamond blocking for optimizing stencil updates

    Full text link
    The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multi-core wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor

    Network-Oblivious Algorithms

    Get PDF
    A framework is proposed for the design and analysis of network-oblivious algorithms, namely algorithms that can run unchanged, yet efficiently, on a variety of machines characterized by different degrees of parallelism and communication capabilities. The framework prescribes that a network-oblivious algorithm be specified on a parallel model of computation where the only parameter is the problem\u2019s input size, and then evaluated on a model with two parameters, capturing parallelism granularity and communication latency. It is shown that for a wide class of network-oblivious algorithms, optimality in the latter model implies optimality in the decomposable bulk synchronous parallel model, which is known to effectively describe a wide and significant class of parallel platforms. The proposed framework can be regarded as an attempt to port the notion of obliviousness, well established in the context of cache hierarchies, to the realm of parallel computation. Its effectiveness is illustrated by providing optimal network-oblivious algorithms for a number of key problems. Some limitations of the oblivious approach are also discussed

    Multicore-aware parallel temporal blocking of stencil codes for shared and distributed memory

    Full text link
    New algorithms and optimization techniques are needed to balance the accelerating trend towards bandwidth-starved multicore chips. It is well known that the performance of stencil codes can be improved by temporal blocking, lessening the pressure on the memory interface. We introduce a new pipelined approach that makes explicit use of shared caches in multicore environments and minimizes synchronization and boundary overhead. For clusters of shared-memory nodes we demonstrate how temporal blocking can be employed successfully in a hybrid shared/distributed-memory environment.Comment: 9 pages, 6 figure

    木を用いた構造化並列プログラミング

    Get PDF
    High-level abstractions for parallel programming are still immature. Computations on complicated data structures such as pointer structures are considered as irregular algorithms. General graph structures, which irregular algorithms generally deal with, are difficult to divide and conquer. Because the divide-and-conquer paradigm is essential for load balancing in parallel algorithms and a key to parallel programming, general graphs are reasonably difficult. However, trees lead to divide-and-conquer computations by definition and are sufficiently general and powerful as a tool of programming. We therefore deal with abstractions of tree-based computations. Our study has started from Matsuzaki’s work on tree skeletons. We have improved the usability of tree skeletons by enriching their implementation aspect. Specifically, we have dealt with two issues. We first have implemented the loose coupling between skeletons and data structures and developed a flexible tree skeleton library. We secondly have implemented a parallelizer that transforms sequential recursive functions in C into parallel programs that use tree skeletons implicitly. This parallelizer hides the complicated API of tree skeletons and makes programmers to use tree skeletons with no burden. Unfortunately, the practicality of tree skeletons, however, has not been improved. On the basis of the observations from the practice of tree skeletons, we deal with two application domains: program analysis and neighborhood computation. In the domain of program analysis, compilers treat input programs as control-flow graphs (CFGs) and perform analysis on CFGs. Program analysis is therefore difficult to divide and conquer. To resolve this problem, we have developed divide-and-conquer methods for program analysis in a syntax-directed manner on the basis of Rosen’s high-level approach. Specifically, we have dealt with data-flow analysis based on Tarjan’s formalization and value-graph construction based on a functional formalization. In the domain of neighborhood computations, a primary issue is locality. A naive parallel neighborhood computation without locality enhancement causes a lot of cache misses. The divide-and-conquer paradigm is known to be useful also for locality enhancement. We therefore have applied algebraic formalizations and a tree-segmenting technique derived from tree skeletons to the locality enhancement of neighborhood computations.電気通信大学201
    corecore