36,028 research outputs found

    The Power of Two Choices in Distributed Voting

    Full text link
    Distributed voting is a fundamental topic in distributed computing. In pull voting, in each step every vertex chooses a neighbour uniformly at random, and adopts its opinion. The voting is completed when all vertices hold the same opinion. On many graph classes including regular graphs, pull voting requires Θ(n)\Theta(n) expected steps to complete, even if initially there are only two distinct opinions. In this paper we consider a related process which we call two-sample voting: every vertex chooses two random neighbours in each step. If the opinions of these neighbours coincide, then the vertex revises its opinion according to the chosen sample. Otherwise, it keeps its own opinion. We consider the performance of this process in the case where two different opinions reside on vertices of some (arbitrary) sets AA and BB, respectively. Here, A+B=n|A| + |B| = n is the number of vertices of the graph. We show that there is a constant KK such that if the initial imbalance between the two opinions is ?ν0=(AB)/nK(1/d)+(d/n)\nu_0 = (|A| - |B|)/n \geq K \sqrt{(1/d) + (d/n)}, then with high probability two sample voting completes in a random dd regular graph in O(logn)O(\log n) steps and the initial majority opinion wins. We also show the same performance for any regular graph, if ν0Kλ2\nu_0 \geq K \lambda_2 where λ2\lambda_2 is the second largest eigenvalue of the transition matrix. In the graphs we consider, standard pull voting requires Ω(n)\Omega(n) steps, and the minority can still win with probability B/n|B|/n.Comment: 22 page

    Local majority dynamics on preferential attachment graphs

    Full text link
    Suppose in a graph GG vertices can be either red or blue. Let kk be odd. At each time step, each vertex vv in GG polls kk random neighbours and takes the majority colour. If it doesn't have kk neighbours, it simply polls all of them, or all less one if the degree of vv is even. We study this protocol on the preferential attachment model of Albert and Barab\'asi, which gives rise to a degree distribution that has roughly power-law P(x)1x3P(x) \sim \frac{1}{x^{3}}, as well as generalisations which give exponents larger than 33. The setting is as follows: Initially each vertex of GG is red independently with probability α<12\alpha < \frac{1}{2}, and is otherwise blue. We show that if α\alpha is sufficiently biased away from 12\frac{1}{2}, then with high probability, consensus is reached on the initial global majority within O(logdlogdt)O(\log_d \log_d t) steps. Here tt is the number of vertices and d5d \geq 5 is the minimum of kk and mm (or m1m-1 if mm is even), mm being the number of edges each new vertex adds in the preferential attachment generative process. Additionally, our analysis reduces the required bias of α\alpha for graphs of a given degree sequence studied by the first author (which includes, e.g., random regular graphs)

    An evolutionary game model for behavioral gambit of loyalists: Global awareness and risk-aversion

    Full text link
    We study the phase diagram of a minority game where three classes of agents are present. Two types of agents play a risk-loving game that we model by the standard Snowdrift Game. The behaviour of the third type of agents is coded by {\em indifference} w.r.t. the game at all: their dynamics is designed to account for risk-aversion as an innovative behavioral gambit. From this point of view, the choice of this solitary strategy is enhanced when innovation starts, while is depressed when it becomes the majority option. This implies that the payoff matrix of the game becomes dependent on the global awareness of the agents measured by the relevance of the population of the indifferent players. The resulting dynamics is non-trivial with different kinds of phase transition depending on a few model parameters. The phase diagram is studied on regular as well as complex networks

    Dynamics of opinion formation in a small-world network

    Full text link
    The dynamical process of opinion formation within a model using a local majority opinion updating rule is studied numerically in networks with the small-world geometrical property. The network is one in which shortcuts are added to randomly chosen pairs of nodes in an underlying regular lattice. The presence of a small number of shortcuts is found to shorten the time to reach a consensus significantly. The effects of having shortcuts in a lattice of fixed spatial dimension are shown to be analogous to that of increasing the spatial dimension in regular lattices. The shortening of the consensus time is shown to be related to the shortening of the mean shortest path as shortcuts are added. Results can also be translated into that of the dynamics of a spin system in a small-world network.Comment: 10 pages, 5 figure
    corecore