33,074 research outputs found

    The estimation of geoacoustic properties from broadband acoustic data, focusing on instantaneous frequency techniques

    Get PDF
    The compressional wave velocity and attenuation of marine sediments are fundamental to marine science. In order to obtain reliable estimates of these parameters it is necessary to examine in situ acoustic data, which is generally broadband. A variety of techniques for estimating the compressional wave velocity and attenuation from broadband acoustic data are reviewed. The application of Instantaneous Frequency (IF) techniques to data collected from a normal-incidence chirp profiler is examined. For the datasets examined the best estimates of IF are obtained by dividing the chirp profile into a series of sections, estimating the IF of each trace in the section using the first moments of the Wigner Ville distribution, and stacking the resulting IF to obtain a composite IF for the section. As the datasets examined cover both gassy and saturated sediments, this is likely to be the optimum technique for chirp datasets collected from all sediment environments

    Multipath Parameter Estimation from OFDM Signals in Mobile Channels

    Full text link
    We study multipath parameter estimation from orthogonal frequency division multiplex signals transmitted over doubly dispersive mobile radio channels. We are interested in cases where the transmission is long enough to suffer time selectivity, but short enough such that the time variation can be accurately modeled as depending only on per-tap linear phase variations due to Doppler effects. We therefore concentrate on the estimation of the complex gain, delay and Doppler offset of each tap of the multipath channel impulse response. We show that the frequency domain channel coefficients for an entire packet can be expressed as the superimposition of two-dimensional complex sinusoids. The maximum likelihood estimate requires solution of a multidimensional non-linear least squares problem, which is computationally infeasible in practice. We therefore propose a low complexity suboptimal solution based on iterative successive and parallel cancellation. First, initial delay/Doppler estimates are obtained via successive cancellation. These estimates are then refined using an iterative parallel cancellation procedure. We demonstrate via Monte Carlo simulations that the root mean squared error statistics of our estimator are very close to the Cramer-Rao lower bound of a single two-dimensional sinusoid in Gaussian noise.Comment: Submitted to IEEE Transactions on Wireless Communications (26 pages, 9 figures and 3 tables

    Measuring test mass acceleration noise in space-based gravitational wave astronomy

    Full text link
    The basic constituent of interferometric gravitational wave detectors -- the test mass to test mass interferometric link -- behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as non-gravitational spurious forces. This last contribution is going to be characterised by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalise over nuisance parameters. The F\mathcal{F}-statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalised to marginalise over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.Comment: 10 pages, 3 figures, 1 tabl

    Calibration Challenges for Future Radio Telescopes

    Full text link
    Instruments for radio astronomical observations have come a long way. While the first telescopes were based on very large dishes and 2-antenna interferometers, current instruments consist of dozens of steerable dishes, whereas future instruments will be even larger distributed sensor arrays with a hierarchy of phased array elements. For such arrays to provide meaningful output (images), accurate calibration is of critical importance. Calibration must solve for the unknown antenna gains and phases, as well as the unknown atmospheric and ionospheric disturbances. Future telescopes will have a large number of elements and a large field of view. In this case the parameters are strongly direction dependent, resulting in a large number of unknown parameters even if appropriately constrained physical or phenomenological descriptions are used. This makes calibration a daunting parameter estimation task, that is reviewed from a signal processing perspective in this article.Comment: 12 pages, 7 figures, 20 subfigures The title quoted in the meta-data is the title after release / final editing

    Joint Transmit and Receive Filter Optimization for Sub-Nyquist Delay-Doppler Estimation

    Full text link
    In this article, a framework is presented for the joint optimization of the analog transmit and receive filter with respect to a parameter estimation problem. At the receiver, conventional signal processing systems restrict the two-sided bandwidth of the analog pre-filter BB to the rate of the analog-to-digital converter fsf_s to comply with the well-known Nyquist-Shannon sampling theorem. In contrast, here we consider a transceiver that by design violates the common paradigm B≤fsB\leq f_s. To this end, at the receiver, we allow for a higher pre-filter bandwidth B>fsB>f_s and study the achievable parameter estimation accuracy under a fixed sampling rate when the transmit and receive filter are jointly optimized with respect to the Bayesian Cram\'{e}r-Rao lower bound. For the case of delay-Doppler estimation, we propose to approximate the required Fisher information matrix and solve the transceiver design problem by an alternating optimization algorithm. The presented approach allows us to explore the Pareto-optimal region spanned by transmit and receive filters which are favorable under a weighted mean squared error criterion. We also discuss the computational complexity of the obtained transceiver design by visualizing the resulting ambiguity function. Finally, we verify the performance of the optimized designs by Monte-Carlo simulations of a likelihood-based estimator.Comment: 15 pages, 16 figure
    • …
    corecore