1,099 research outputs found

    Two-Level Rectilinear Steiner Trees

    Get PDF
    Given a set PP of terminals in the plane and a partition of PP into kk subsets P1,...,PkP_1, ..., P_k, a two-level rectilinear Steiner tree consists of a rectilinear Steiner tree TiT_i connecting the terminals in each set PiP_i (i=1,...,ki=1,...,k) and a top-level tree TtopT_{top} connecting the trees T1,...,TkT_1, ..., T_k. The goal is to minimize the total length of all trees. This problem arises naturally in the design of low-power physical implementations of parity functions on a computer chip. For bounded kk we present a polynomial time approximation scheme (PTAS) that is based on Arora's PTAS for rectilinear Steiner trees after lifting each partition into an extra dimension. For the general case we propose an algorithm that predetermines a connection point for each TiT_i and TtopT_{top} (i=1,...,ki=1,...,k). Then, we apply any approximation algorithm for minimum rectilinear Steiner trees in the plane to compute each TiT_i and TtopT_{top} independently. This gives us a 2.372.37-factor approximation with a running time of O(PlogP)\mathcal{O}(|P|\log|P|) suitable for fast practical computations. The approximation factor reduces to 1.631.63 by applying Arora's approximation scheme in the plane

    Spanning trees short or small

    Full text link
    We study the problem of finding small trees. Classical network design problems are considered with the additional constraint that only a specified number kk of nodes are required to be connected in the solution. A prototypical example is the kkMST problem in which we require a tree of minimum weight spanning at least kk nodes in an edge-weighted graph. We show that the kkMST problem is NP-hard even for points in the Euclidean plane. We provide approximation algorithms with performance ratio 2k2\sqrt{k} for the general edge-weighted case and O(k1/4)O(k^{1/4}) for the case of points in the plane. Polynomial-time exact solutions are also presented for the class of decomposable graphs which includes trees, series-parallel graphs, and bounded bandwidth graphs, and for points on the boundary of a convex region in the Euclidean plane. We also investigate the problem of finding short trees, and more generally, that of finding networks with minimum diameter. A simple technique is used to provide a polynomial-time solution for finding kk-trees of minimum diameter. We identify easy and hard problems arising in finding short networks using a framework due to T. C. Hu.Comment: 27 page

    Polylogarithmic Approximation for Generalized Minimum Manhattan Networks

    Full text link
    Given a set of nn terminals, which are points in dd-dimensional Euclidean space, the minimum Manhattan network problem (MMN) asks for a minimum-length rectilinear network that connects each pair of terminals by a Manhattan path, that is, a path consisting of axis-parallel segments whose total length equals the pair's Manhattan distance. Even for d=2d=2, the problem is NP-hard, but constant-factor approximations are known. For d3d \ge 3, the problem is APX-hard; it is known to admit, for any \eps > 0, an O(n^\eps)-approximation. In the generalized minimum Manhattan network problem (GMMN), we are given a set RR of nn terminal pairs, and the goal is to find a minimum-length rectilinear network such that each pair in RR is connected by a Manhattan path. GMMN is a generalization of both MMN and the well-known rectilinear Steiner arborescence problem (RSA). So far, only special cases of GMMN have been considered. We present an O(logd+1n)O(\log^{d+1} n)-approximation algorithm for GMMN (and, hence, MMN) in d2d \ge 2 dimensions and an O(logn)O(\log n)-approximation algorithm for 2D. We show that an existing O(logn)O(\log n)-approximation algorithm for RSA in 2D generalizes easily to d>2d>2 dimensions.Comment: 14 pages, 5 figures; added appendix and figure

    Optimal competitiveness for the Rectilinear Steiner Arborescence problem

    Full text link
    We present optimal online algorithms for two related known problems involving Steiner Arborescence, improving both the lower and the upper bounds. One of them is the well studied continuous problem of the {\em Rectilinear Steiner Arborescence} (RSARSA). We improve the lower bound and the upper bound on the competitive ratio for RSARSA from O(logN)O(\log N) and Ω(logN)\Omega(\sqrt{\log N}) to Θ(logNloglogN)\Theta(\frac{\log N}{\log \log N}), where NN is the number of Steiner points. This separates the competitive ratios of RSARSA and the Symetric-RSARSA, two problems for which the bounds of Berman and Coulston is STOC 1997 were identical. The second problem is one of the Multimedia Content Distribution problems presented by Papadimitriou et al. in several papers and Charikar et al. SODA 1998. It can be viewed as the discrete counterparts (or a network counterpart) of RSARSA. For this second problem we present tight bounds also in terms of the network size, in addition to presenting tight bounds in terms of the number of Steiner points (the latter are similar to those we derived for RSARSA)

    Optimal competitiveness for Symmetric Rectilinear Steiner Arborescence and related problems

    Full text link
    We present optimal competitive algorithms for two interrelated known problems involving Steiner Arborescence. One is the continuous problem of the Symmetric Rectilinear Steiner Arborescence (SRSA), studied by Berman and Coulston. A very related, but discrete problem (studied separately in the past) is the online Multimedia Content Delivery (MCD) problem on line networks, presented originally by Papadimitriu, Ramanathan, and Rangan. An efficient content delivery was modeled as a low cost Steiner arborescence in a grid of network*time they defined. We study here the version studied by Charikar, Halperin, and Motwani (who used the same problem definitions, but removed some constraints on the inputs). The bounds on the competitive ratios introduced separately in the above papers are similar for the two problems: O(log N) for the continuous problem and O(log n) for the network problem, where N was the number of terminals to serve, and n was the size of the network. The lower bounds were Omega(sqrt{log N}) and Omega(sqrt{log n}) correspondingly. Berman and Coulston conjectured that both the upper bound and the lower bound could be improved. We disprove this conjecture and close these quadratic gaps for both problems. We first present an O(sqrt{log n}) deterministic competitive algorithm for MCD on the line, matching the lower bound. We then translate this algorithm to become a competitive optimal algorithm O(sqrt{log N}) for SRSA. Finally, we translate the latter back to solve MCD problem, this time competitive optimally even in the case that the number of requests is small (that is, O(min{sqrt{log n},sqrt{log N}})). We also present a Omega(sqrt[3]{log n}) lower bound on the competitiveness of any randomized algorithm. Some of the techniques may be useful in other contexts

    The Geometric Maximum Traveling Salesman Problem

    Full text link
    We consider the traveling salesman problem when the cities are points in R^d for some fixed d and distances are computed according to geometric distances, determined by some norm. We show that for any polyhedral norm, the problem of finding a tour of maximum length can be solved in polynomial time. If arithmetic operations are assumed to take unit time, our algorithms run in time O(n^{f-2} log n), where f is the number of facets of the polyhedron determining the polyhedral norm. Thus for example we have O(n^2 log n) algorithms for the cases of points in the plane under the Rectilinear and Sup norms. This is in contrast to the fact that finding a minimum length tour in each case is NP-hard. Our approach can be extended to the more general case of quasi-norms with not necessarily symmetric unit ball, where we get a complexity of O(n^{2f-2} log n). For the special case of two-dimensional metrics with f=4 (which includes the Rectilinear and Sup norms), we present a simple algorithm with O(n) running time. The algorithm does not use any indirect addressing, so its running time remains valid even in comparison based models in which sorting requires Omega(n \log n) time. The basic mechanism of the algorithm provides some intuition on why polyhedral norms allow fast algorithms. Complementing the results on simplicity for polyhedral norms, we prove that for the case of Euclidean distances in R^d for d>2, the Maximum TSP is NP-hard. This sheds new light on the well-studied difficulties of Euclidean distances.Comment: 24 pages, 6 figures; revised to appear in Journal of the ACM. (clarified some minor points, fixed typos
    corecore