989 research outputs found

    Quadratic diameter bounds for dual network flow polyhedra

    Full text link
    Both the combinatorial and the circuit diameters of polyhedra are of interest to the theory of linear programming for their intimate connection to a best-case performance of linear programming algorithms. We study the diameters of dual network flow polyhedra associated to bb-flows on directed graphs G=(V,E)G=(V,E) and prove quadratic upper bounds for both of them: the minimum of (V1)E(|V|-1)\cdot |E| and 16V3\frac{1}{6}|V|^3 for the combinatorial diameter, and V(V1)2\frac{|V|\cdot (|V|-1)}{2} for the circuit diameter. The latter strengthens the cubic bound implied by a result in [De Loera, Hemmecke, Lee; 2014]. Previously, bounds on these diameters have only been known for bipartite graphs. The situation is much more involved for general graphs. In particular, we construct a family of dual network flow polyhedra with members that violate the circuit diameter bound for bipartite graphs by an arbitrary additive constant. Further, it provides examples of circuit diameter 43V4\frac{4}{3}|V| - 4

    Robust capacitated trees and networks with uniform demands

    Full text link
    We are interested in the design of robust (or resilient) capacitated rooted Steiner networks in case of terminals with uniform demands. Formally, we are given a graph, capacity and cost functions on the edges, a root, a subset of nodes called terminals, and a bound k on the number of edge failures. We first study the problem where k = 1 and the network that we want to design must be a tree covering the root and the terminals: we give complexity results and propose models to optimize both the cost of the tree and the number of terminals disconnected from the root in the worst case of an edge failure, while respecting the capacity constraints on the edges. Second, we consider the problem of computing a minimum-cost survivable network, i.e., a network that covers the root and terminals even after the removal of any k edges, while still respecting the capacity constraints on the edges. We also consider the possibility of protecting a given number of edges. We propose three different formulations: a cut-set based formulation, a flow based one, and a bilevel one (with an attacker and a defender). We propose algorithms to solve each formulation and compare their efficiency

    Polyhedra with few 3-cuts are hamiltonian

    Get PDF
    In 1956, Tutte showed that every planar 4-connected graph is hamiltonian. In this article, we will generalize this result and prove that polyhedra with at most three 3-cuts are hamiltonian. In 2002 Jackson and Yu have shown this result for the subclass of triangulations. We also prove that polyhedra with at most four 3-cuts have a hamiltonian path. It is well known that for each k6k \ge 6 non-hamiltonian polyhedra with kk 3-cuts exist. We give computational results on lower bounds on the order of a possible non-hamiltonian polyhedron for the remaining open cases of polyhedra with four or five 3-cuts.Comment: 21 pages; changed titl

    Fractional Perfect b-Matching Polytopes. I: General Theory

    Get PDF
    The fractional perfect b-matching polytope of an undirected graph G is the polytope of all assignments of nonnegative real numbers to the edges of G such that the sum of the numbers over all edges incident to any vertex v is a prescribed nonnegative number b_v. General theorems which provide conditions for nonemptiness, give a formula for the dimension, and characterize the vertices, edges and face lattices of such polytopes are obtained. Many of these results are expressed in terms of certain spanning subgraphs of G which are associated with subsets or elements of the polytope. For example, it is shown that an element u of the fractional perfect b-matching polytope of G is a vertex of the polytope if and only if each component of the graph of u either is acyclic or else contains exactly one cycle with that cycle having odd length, where the graph of u is defined to be the spanning subgraph of G whose edges are those at which u is positive.Comment: 37 page

    The Salesman's Improved Tours for Fundamental Classes

    Full text link
    Finding the exact integrality gap α\alpha for the LP relaxation of the metric Travelling Salesman Problem (TSP) has been an open problem for over thirty years, with little progress made. It is known that 4/3α3/24/3 \leq \alpha \leq 3/2, and a famous conjecture states α=4/3\alpha = 4/3. For this problem, essentially two "fundamental" classes of instances have been proposed. This fundamental property means that in order to show that the integrality gap is at most ρ\rho for all instances of metric TSP, it is sufficient to show it only for the instances in the fundamental class. However, despite the importance and the simplicity of such classes, no apparent effort has been deployed for improving the integrality gap bounds for them. In this paper we take a natural first step in this endeavour, and consider the 1/21/2-integer points of one such class. We successfully improve the upper bound for the integrality gap from 3/23/2 to 10/710/7 for a superclass of these points, as well as prove a lower bound of 4/34/3 for the superclass. Our methods involve innovative applications of tools from combinatorial optimization which have the potential to be more broadly applied
    corecore