2,836 research outputs found

    On graphs with representation number 3

    Get PDF
    A graph G=(V,E)G=(V,E) is word-representable if there exists a word ww over the alphabet VV such that letters xx and yy alternate in ww if and only if (x,y)(x,y) is an edge in EE. A graph is word-representable if and only if it is kk-word-representable for some kk, that is, if there exists a word containing kk copies of each letter that represents the graph. Also, being kk-word-representable implies being (k+1)(k+1)-word-representable. The minimum kk such that a word-representable graph is kk-word-representable, is called graph's representation number. Graphs with representation number 1 are complete graphs, while graphs with representation number 2 are circle graphs. The only fact known before this paper on the class of graphs with representation number 3, denoted by R3\mathcal{R}_3, is that the Petersen graph and triangular prism belong to this class. In this paper, we show that any prism belongs to R3\mathcal{R}_3, and that two particular operations of extending graphs preserve the property of being in R3\mathcal{R}_3. Further, we show that R3\mathcal{R}_3 is not included in a class of cc-colorable graphs for a constant cc. To this end, we extend three known results related to operations on graphs. We also show that ladder graphs used in the study of prisms are 22-word-representable, and thus each ladder graph is a circle graph. Finally, we discuss kk-word-representing comparability graphs via consideration of crown graphs, where we state some problems for further research

    A survey of recent results on congruence lattices of lattices

    Full text link
    We review recent results on congruence lattices of (infinite) lattices. We discuss results obtained with box products, as well as categorical, ring-theoretical, and topological results
    • …
    corecore