23 research outputs found

    The intuitionistic fragment of computability logic at the propositional level

    Get PDF
    This paper presents a soundness and completeness proof for propositional intuitionistic calculus with respect to the semantics of computability logic. The latter interprets formulas as interactive computational problems, formalized as games between a machine and its environment. Intuitionistic implication is understood as algorithmic reduction in the weakest possible -- and hence most natural -- sense, disjunction and conjunction as deterministic-choice combinations of problems (disjunction = machine's choice, conjunction = environment's choice), and "absurd" as a computational problem of universal strength. See http://www.cis.upenn.edu/~giorgi/cl.html for a comprehensive online source on computability logic

    A new face of the branching recurrence of computability logic

    Get PDF
    This letter introduces a new, substantially simplified version of the branching recurrence operation of computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html), and proves its equivalence to the old, "canonical" version

    Separating the basic logics of the basic recurrences

    Get PDF
    This paper shows that, even at the most basic level, the parallel, countable branching and uncountable branching recurrences of Computability Logic (see http://www.cis.upenn.edu/~giorgi/cl.html) validate different principles

    Introduction to clarithmetic II

    Full text link
    The earlier paper "Introduction to clarithmetic I" constructed an axiomatic system of arithmetic based on computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html), and proved its soundness and extensional completeness with respect to polynomial time computability. The present paper elaborates three additional sound and complete systems in the same style and sense: one for polynomial space computability, one for elementary recursive time (and/or space) computability, and one for primitive recursive time (and/or space) computability

    A logical basis for constructive systems

    Full text link
    The work is devoted to Computability Logic (CoL) -- the philosophical/mathematical platform and long-term project for redeveloping classical logic after replacing truth} by computability in its underlying semantics (see http://www.cis.upenn.edu/~giorgi/cl.html). This article elaborates some basic complexity theory for the CoL framework. Then it proves soundness and completeness for the deductive system CL12 with respect to the semantics of CoL, including the version of the latter based on polynomial time computability instead of computability-in-principle. CL12 is a sequent calculus system, where the meaning of a sequent intuitively can be characterized as "the succedent is algorithmically reducible to the antecedent", and where formulas are built from predicate letters, function letters, variables, constants, identity, negation, parallel and choice connectives, and blind and choice quantifiers. A case is made that CL12 is an adequate logical basis for constructive applied theories, including complexity-oriented ones
    corecore