1,637 research outputs found

    The Impact of Ethereum Throughput and Fees on Transaction Latency During ICOs

    Get PDF

    Designing a Blockchain Model for the Paris Agreement’s Carbon Market Mechanism

    Get PDF
    This paper examines the benefits and constraints of applying blockchain technology for the Paris Agreement carbon market mechanism and develops a list of technical requirements and soft factors as selection criteria to test the feasibility of two different blockchain platforms. The carbon market mechanism, as outlined in Article 6.2 of the Paris Agreement, can accelerate climate action by enabling cooperation between national Parties. However, in the past, carbon markets were limited by several constraints. Our research investigates these constraints and translates them into selection criteria to design a blockchain platform to overcome these past limitations. The developed selection criteria and assumptions developed in this paper provide an orientation for blockchain assessments. Using the selection criteria, we examine the feasibility of two distinct blockchains, Ethereum and Hyperledger Fabric, for the specific use case of Article 6.2. These two blockchain systems represent contrary forms of design and governance; Ethereum constitutes a public and permissionless blockchain governance system, while Hyperledger Fabric represents a private and permissioned governance system. Our results show that both blockchain systems can address present carbon market constraints by enhancing market transparency, increasing process automation, and preventing double counting. The final selection and blockchain system implementation will first be possible, when the Article 6 negotiations are concluded, and governance preferences of national Parties are established. Our paper informs about the viability of different blockchain systems, offers insights into governance options, and provides a valuable framework for a concrete blockchain selection in the future.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    LikeStarter: a Smart-contract based Social DAO for Crowdfunding

    Full text link
    Crowdfunding has become a popular form of collective funding, in which small donations or investments, made by groups of people, support the development of new projects in exchange of free products or different types of recognition. Social network sites, on the other hand, promote user cooperation and currently are at the basis of any individuals cyber-interactions. In this paper, we present LikeStarter, a blockchain-based decentralized platform that combines social interactions with crowdfunding mechanisms, allowing any user to raise funds while becoming popular in the social network. Being built over the Ethereum blockchain, LikeStarter is structured as a Decentralized Autonomous Organization (DAO), that fosters crowdfunding without the intervention of any central authority, and recognizes the active role of donors, enabling them to support artists or projects, while making profits.Comment: Proceedings of the 2st Workshop on Cryptocurrencies and Blockchains for Distributed Systems (CryBlock'19). Paris, France, 29 April, 201

    Impact of Geo-distribution and Mining Pools on Blockchains: A Study of Ethereum

    Full text link
    Given the large adoption and economical impact of permissionless blockchains, the complexity of the underlying systems and the adversarial environment in which they operate, it is fundamental to properly study and understand the emergent behavior and properties of these systems. We describe our experience on a detailed, one-month study of the Ethereum network from several geographically dispersed observation points. We leverage multiple geographic vantage points to assess the key pillars of Ethereum, namely geographical dispersion, network efficiency, blockchain efficiency and security, and the impact of mining pools. Among other new findings, we identify previously undocumented forms of selfish behavior and show that the prevalence of powerful mining pools exacerbates the geographical impact on block propagation delays. Furthermore, we provide a set of open measurement and processing tools, as well as the data set of the collected measurements, in order to promote further research on understanding permissionless blockchains.Comment: To appear in 50th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 202

    Bribes to Miners: Evidence from Ethereum

    Full text link
    Though blockchain aims to alleviate bribing attacks, users can collude with miners by directly sending bribes. This paper focuses on empirical evidence of bribes to miners, and the detected behaviour implies that mining power could be exploited. By scanning transactions on Ethereum, transactions for potential direct bribes are filtered, and we find that the potential bribers and bribees are centralized in a small group. After constructing proxies of active level of potential bribing, we find that potential bribes can affect the status of Ethereum and other mainstream blockchains, and network adoption of blockchain can be influenced as well. Besides, direct bribes can be related to stock markets, e.g., S&P 500 and Nasdaq
    • …
    corecore