10 research outputs found

    On maximal chain subgraphs and covers of bipartite graphs

    Get PDF
    In this paper, we address three related problems. One is the enumeration of all the maximal edge induced chain subgraphs of a bipartite graph, for which we provide a polynomial delay algorithm. We give bounds on the number of maximal chain subgraphs for a bipartite graph and use them to establish the input-sensitive complexity of the enumeration problem. The second problem we treat is the one of finding the minimum number of chain subgraphs needed to cover all the edges a bipartite graph. For this we provide an exact exponential algorithm with a non trivial complexity. Finally, we approach the problem of enumerating all minimal chain subgraph covers of a bipartite graph and show that it can be solved in quasi-polynomial time

    Linear-Time Algorithms for Maximum-Weight Induced Matchings and Minimum Chain Covers in Convex Bipartite Graphs

    Full text link
    A bipartite graph G=(U,V,E)G=(U,V,E) is convex if the vertices in VV can be linearly ordered such that for each vertex u∈Uu\in U, the neighbors of uu are consecutive in the ordering of VV. An induced matching HH of GG is a matching such that no edge of EE connects endpoints of two different edges of HH. We show that in a convex bipartite graph with nn vertices and mm weighted edges, an induced matching of maximum total weight can be computed in O(n+m)O(n+m) time. An unweighted convex bipartite graph has a representation of size O(n)O(n) that records for each vertex u∈Uu\in U the first and last neighbor in the ordering of VV. Given such a compact representation, we compute an induced matching of maximum cardinality in O(n)O(n) time. In convex bipartite graphs, maximum-cardinality induced matchings are dual to minimum chain covers. A chain cover is a covering of the edge set by chain subgraphs, that is, subgraphs that do not contain induced matchings of more than one edge. Given a compact representation, we compute a representation of a minimum chain cover in O(n)O(n) time. If no compact representation is given, the cover can be computed in O(n+m)O(n+m) time. All of our algorithms achieve optimal running time for the respective problem and model. Previous algorithms considered only the unweighted case, and the best algorithm for computing a maximum-cardinality induced matching or a minimum chain cover in a convex bipartite graph had a running time of O(n2)O(n^2)

    On Maximal Chain Subgraphs and Covers of Bipartite Graphs

    Get PDF
    International audienceIn this paper, we address three related problems. One is the enumeration of all the maximal edge induced chain subgraphs of a bipartite graph, for which we provide a polynomial delay algorithm. We give bounds on the number of maximal chain subgraphs for a bipartite graph and use them to establish the input-sensitive complexity of the enumeration problem. The second problem we treat is the one of finding the minimum number of chain subgraphs needed to cover all the edges a bipartite graph. For this we provide an exact exponential algorithm with a non trivial complexity. Finally, we approach the problem of enumerating all minimal chain subgraph covers of a bipartite graph and show that it can be solved in quasi-polynomial time

    Algorithms for the quantitative Lock/Key model of cytoplasmic incompatibility

    Get PDF
    Cytoplasmic incompatibility (CI) relates to the manipulation by the parasite Wolbachia of its host reproduction. Despite its widespread occurrence, the molecular basis of CI remains unclear and theoretical models have been proposed to understand the phenomenon. We consider in this paper the quantitative Lock-Key model which currently represents a good hypothesis that is consistent with the data available. CI is in this case modelled as the problem of covering the edges of a bipartite graph with the minimum number of chain subgraphs. This problem is already known to be NP-hard, and we provide an exponential algorithm with a non trivial complexity. It is frequent that depending on the dataset, there may be many optimal solutions which can be biologically quite different among them. To rely on a single optimal solution may therefore be problematic. To this purpose, we address the problem of enumerating (listing) all minimal chain subgraph covers of a bipartite graph and show that it can be solved in quasi-polynomial time. Interestingly, in order to solve the above problems, we considered also the problem of enumerating all the maximal chain subgraphs of a bipartite graph and improved on the current results in the literature for the latter. Finally, to demonstrate the usefulness of our methods we show an application on a real dataset

    Algorithms for the quantitative Lock/Key model of cytoplasmic incompatibility

    Get PDF
    International audienceCytoplasmic incompatibility (CI) relates to the manipulation by the parasite Wolbachia of its host reproduction. Despite its widespread occurrence, the molecular basis of CI remains unclear and theoretical models have been proposed to understand the phenomenon. We consider in this paper the quantitative Lock-Key model which currently represents a good hypothesis that is consistent with the data available. CI is in this case modelled as the problem of covering the edges of a bipartite graph with the minimum number of chain subgraphs. This problem is already known to be NP-hard, and we provide an exponential algorithm with a non trivial complexity. It is frequent that depending on the dataset, there may be many optimal solutions which can be biologically quite different among them. To rely on a single optimal solution may therefore be problematic. To this purpose, we address the problem of enumerating (listing) all minimal chain subgraph covers of a bipartite graph and show that it can be solved in quasi-polynomial time. Interestingly, in order to solve the above problems, we considered also the problem of enumerating all the maximal chain subgraphs of a bipartite graph and improved on the current results in the literature for the latter. Finally, to demonstrate the usefulness of our methods we show an application on a real dataset

    DOC 2014-09 Proposal for MS in Computer Engineering (MSCPE)

    Get PDF
    Legislative authorit

    Boundary properties of graphs

    Get PDF
    A set of graphs may acquire various desirable properties, if we apply suitable restrictions on the set. We investigate the following two questions: How far, exactly, must one restrict the structure of a graph to obtain a certain interesting property? What kind of tools are helpful to classify sets of graphs into those which satisfy a property and those that do not? Equipped with a containment relation, a graph class is a special example of a partially ordered set. We introduce the notion of a boundary ideal as a generalisation of a notion introduced by Alekseev in 2003, to provide a tool to indicate whether a partially ordered set satisfies a desirable property or not. This tool can give a complete characterisation of lower ideals defined by a finite forbidden set, into those that satisfy the given property and to those that do not. In the case of graphs, a lower ideal with respect to the induced subgraph relation is known as a hereditary graph class. We study three interrelated types of properties for hereditary graph classes: the existence of an efficient solution to an algorithmic graph problem, the boundedness of the graph parameter known as clique-width, and well-quasi-orderability by the induced subgraph relation. It was shown by Courcelle, Makowsky and Rotics in 2000 that, for a graph class, boundedness of clique-width immediately implies an efficient solution to a wide range of algorithmic problems. This serves as one of the motivations to study clique-width. As for well-quasiorderability, we conjecture that every hereditary graph class that is well-quasi-ordered by the induced subgraph relation also has bounded clique-width. We discover the first boundary classes for several algorithmic graph problems, including the Hamiltonian cycle problem. We also give polynomial-time algorithms for the dominating induced matching problem, for some restricted graph classes. After discussing the special importance of bipartite graphs in the study of clique-width, we describe a general framework for constructing bipartite graphs of large clique-width. As a consequence, we find a new minimal class of unbounded clique-width. We prove numerous positive and negative results regarding the well-quasi-orderability of classes of bipartite graphs. This completes a characterisation of the well-quasi-orderability of all classes of bipartite graphs defined by one forbidden induced bipartite subgraph. We also make considerable progress in characterising general graph classes defined by two forbidden induced subgraphs, reducing the task to a small finite number of open cases. Finally, we show that, in general, for hereditary graph classes defined by a forbidden set of bounded finite size, a similar reduction is not usually possible, but the number of boundary classes to determine well-quasi-orderability is nevertheless finite. Our results, together with the notion of boundary ideals, are also relevant for the study of other partially ordered sets in mathematics, such as permutations ordered by the pattern containment relation

    Boundary properties of graphs

    Get PDF
    A set of graphs may acquire various desirable properties, if we apply suitable restrictions on the set. We investigate the following two questions: How far, exactly, must one restrict the structure of a graph to obtain a certain interesting property? What kind of tools are helpful to classify sets of graphs into those which satisfy a property and those that do not? Equipped with a containment relation, a graph class is a special example of a partially ordered set. We introduce the notion of a boundary ideal as a generalisation of a notion introduced by Alekseev in 2003, to provide a tool to indicate whether a partially ordered set satisfies a desirable property or not. This tool can give a complete characterisation of lower ideals defined by a finite forbidden set, into those that satisfy the given property and to those that do not. In the case of graphs, a lower ideal with respect to the induced subgraph relation is known as a hereditary graph class. We study three interrelated types of properties for hereditary graph classes: the existence of an efficient solution to an algorithmic graph problem, the boundedness of the graph parameter known as clique-width, and well-quasi-orderability by the induced subgraph relation. It was shown by Courcelle, Makowsky and Rotics in 2000 that, for a graph class, boundedness of clique-width immediately implies an efficient solution to a wide range of algorithmic problems. This serves as one of the motivations to study clique-width. As for well-quasiorderability, we conjecture that every hereditary graph class that is well-quasi-ordered by the induced subgraph relation also has bounded clique-width. We discover the first boundary classes for several algorithmic graph problems, including the Hamiltonian cycle problem. We also give polynomial-time algorithms for the dominating induced matching problem, for some restricted graph classes. After discussing the special importance of bipartite graphs in the study of clique-width, we describe a general framework for constructing bipartite graphs of large clique-width. As a consequence, we find a new minimal class of unbounded clique-width. We prove numerous positive and negative results regarding the well-quasi-orderability of classes of bipartite graphs. This completes a characterisation of the well-quasi-orderability of all classes of bipartite graphs defined by one forbidden induced bipartite subgraph. We also make considerable progress in characterising general graph classes defined by two forbidden induced subgraphs, reducing the task to a small finite number of open cases. Finally, we show that, in general, for hereditary graph classes defined by a forbidden set of bounded finite size, a similar reduction is not usually possible, but the number of boundary classes to determine well-quasi-orderability is nevertheless finite. Our results, together with the notion of boundary ideals, are also relevant for the study of other partially ordered sets in mathematics, such as permutations ordered by the pattern containment relation.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC)University of Warwick. Centre for Discrete Mathematics and its Applications (DIMAP)GBUnited Kingdo
    corecore