30,223 research outputs found

    Scaling Limits for Minimal and Random Spanning Trees in Two Dimensions

    Full text link
    A general formulation is presented for continuum scaling limits of stochastic spanning trees. A spanning tree is expressed in this limit through a consistent collection of subtrees, which includes a tree for every finite set of endpoints in Rd\R^d. Tightness of the distribution, as δ0\delta \to 0, is established for the following two-dimensional examples: the uniformly random spanning tree on δZ2\delta \Z^2, the minimal spanning tree on δZ2\delta \Z^2 (with random edge lengths), and the Euclidean minimal spanning tree on a Poisson process of points in R2\R^2 with density δ2\delta^{-2}. In each case, sample trees are proven to have the following properties, with probability one with respect to any of the limiting measures: i) there is a single route to infinity (as was known for δ>0\delta > 0), ii) the tree branches are given by curves which are regular in the sense of H\"older continuity, iii) the branches are also rough, in the sense that their Hausdorff dimension exceeds one, iv) there is a random dense subset of R2\R^2, of dimension strictly between one and two, on the complement of which (and only there) the spanning subtrees are unique with continuous dependence on the endpoints, v) branching occurs at countably many points in R2\R^2, and vi) the branching numbers are uniformly bounded. The results include tightness for the loop erased random walk (LERW) in two dimensions. The proofs proceed through the derivation of scale-invariant power bounds on the probabilities of repeated crossings of annuli.Comment: Revised; 54 pages, 6 figures (LaTex

    How to Couple from the Past Using a Read-Once Source of Randomness

    Full text link
    We give a new method for generating perfectly random samples from the stationary distribution of a Markov chain. The method is related to coupling from the past (CFTP), but only runs the Markov chain forwards in time, and never restarts it at previous times in the past. The method is also related to an idea known as PASTA (Poisson arrivals see time averages) in the operations research literature. Because the new algorithm can be run using a read-once stream of randomness, we call it read-once CFTP. The memory and time requirements of read-once CFTP are on par with the requirements of the usual form of CFTP, and for a variety of applications the requirements may be noticeably less. Some perfect sampling algorithms for point processes are based on an extension of CFTP known as coupling into and from the past; for completeness, we give a read-once version of coupling into and from the past, but it remains unpractical. For these point process applications, we give an alternative coupling method with which read-once CFTP may be efficiently used.Comment: 28 pages, 2 figure

    An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles

    Full text link
    The Lovasz Local Lemma is a seminal result in probabilistic combinatorics. It gives a sufficient condition on a probability space and a collection of events for the existence of an outcome that simultaneously avoids all of those events. Finding such an outcome by an efficient algorithm has been an active research topic for decades. Breakthrough work of Moser and Tardos (2009) presented an efficient algorithm for a general setting primarily characterized by a product structure on the probability space. In this work we present an efficient algorithm for a much more general setting. Our main assumption is that there exist certain functions, called resampling oracles, that can be invoked to address the undesired occurrence of the events. We show that, in all scenarios to which the original Lovasz Local Lemma applies, there exist resampling oracles, although they are not necessarily efficient. Nevertheless, for essentially all known applications of the Lovasz Local Lemma and its generalizations, we have designed efficient resampling oracles. As applications of these techniques, we present new results for packings of Latin transversals, rainbow matchings and rainbow spanning trees.Comment: 47 page

    Biconed graphs, edge-rooted forests, and h-vectors of matroid complexes

    Full text link
    A well-known conjecture of Richard Stanley posits that the hh-vector of the independence complex of a matroid is a pure O{\mathcal O}-sequence. The conjecture has been established for various classes but is open for graphic matroids. A biconed graph is a graph with two specified `coning vertices', such that every vertex of the graph is connected to at least one coning vertex. The class of biconed graphs includes coned graphs, Ferrers graphs, and complete multipartite graphs. We study the hh-vectors of graphic matroids arising from biconed graphs, providing a combinatorial interpretation of their entries in terms of `edge-rooted forests' of the underlying graph. This generalizes constructions of Kook and Lee who studied the M\"obius coinvariant (the last nonzero entry of the hh-vector) of graphic matroids of complete bipartite graphs. We show that allowing for partially edge-rooted forests gives rise to a pure multicomplex whose face count recovers the hh-vector, establishing Stanley's conjecture for this class of matroids.Comment: 15 pages, 3 figures; V2: added omitted author to metadat

    Robustness: a New Form of Heredity Motivated by Dynamic Networks

    Full text link
    We investigate a special case of hereditary property in graphs, referred to as {\em robustness}. A property (or structure) is called robust in a graph GG if it is inherited by all the connected spanning subgraphs of GG. We motivate this definition using two different settings of dynamic networks. The first corresponds to networks of low dynamicity, where some links may be permanently removed so long as the network remains connected. The second corresponds to highly-dynamic networks, where communication links appear and disappear arbitrarily often, subject only to the requirement that the entities are temporally connected in a recurrent fashion ({\it i.e.} they can always reach each other through temporal paths). Each context induces a different interpretation of the notion of robustness. We start by motivating the definition and discussing the two interpretations, after what we consider the notion independently from its interpretation, taking as our focus the robustness of {\em maximal independent sets} (MIS). A graph may or may not admit a robust MIS. We characterize the set of graphs \forallMIS in which {\em all} MISs are robust. Then, we turn our attention to the graphs that {\em admit} a robust MIS (\existsMIS). This class has a more complex structure; we give a partial characterization in terms of elementary graph properties, then a complete characterization by means of a (polynomial time) decision algorithm that accepts if and only if a robust MIS exists. This algorithm can be adapted to construct such a solution if one exists
    corecore