38,350 research outputs found

    A Phase Vocoder based on Nonstationary Gabor Frames

    Full text link
    We propose a new algorithm for time stretching music signals based on the theory of nonstationary Gabor frames (NSGFs). The algorithm extends the techniques of the classical phase vocoder (PV) by incorporating adaptive time-frequency (TF) representations and adaptive phase locking. The adaptive TF representations imply good time resolution for the onsets of attack transients and good frequency resolution for the sinusoidal components. We estimate the phase values only at peak channels and the remaining phases are then locked to the values of the peaks in an adaptive manner. During attack transients we keep the stretch factor equal to one and we propose a new strategy for determining which channels are relevant for reinitializing the corresponding phase values. In contrast to previously published algorithms we use a non-uniform NSGF to obtain a low redundancy of the corresponding TF representation. We show that with just three times as many TF coefficients as signal samples, artifacts such as phasiness and transient smearing can be greatly reduced compared to the classical PV. The proposed algorithm is tested on both synthetic and real world signals and compared with state of the art algorithms in a reproducible manner.Comment: 10 pages, 6 figure

    Expediting TTS Synthesis with Adversarial Vocoding

    Get PDF
    Recent approaches in text-to-speech (TTS) synthesis employ neural network strategies to vocode perceptually-informed spectrogram representations directly into listenable waveforms. Such vocoding procedures create a computational bottleneck in modern TTS pipelines. We propose an alternative approach which utilizes generative adversarial networks (GANs) to learn mappings from perceptually-informed spectrograms to simple magnitude spectrograms which can be heuristically vocoded. Through a user study, we show that our approach significantly outperforms na\"ive vocoding strategies while being hundreds of times faster than neural network vocoders used in state-of-the-art TTS systems. We also show that our method can be used to achieve state-of-the-art results in unsupervised synthesis of individual words of speech.Comment: Published as a conference paper at INTERSPEECH 201

    A High Quality Text-To-Speech System Composed of Multiple Neural Networks

    Full text link
    While neural networks have been employed to handle several different text-to-speech tasks, ours is the first system to use neural networks throughout, for both linguistic and acoustic processing. We divide the text-to-speech task into three subtasks, a linguistic module mapping from text to a linguistic representation, an acoustic module mapping from the linguistic representation to speech, and a video module mapping from the linguistic representation to animated images. The linguistic module employs a letter-to-sound neural network and a postlexical neural network. The acoustic module employs a duration neural network and a phonetic neural network. The visual neural network is employed in parallel to the acoustic module to drive a talking head. The use of neural networks that can be retrained on the characteristics of different voices and languages affords our system a degree of adaptability and naturalness heretofore unavailable.Comment: Source link (9812006.tar.gz) contains: 1 PostScript file (4 pages) and 3 WAV audio files. If your system does not support Windows WAV files, try a tool like "sox" to translate the audio into a format of your choic
    • …
    corecore