11,082 research outputs found

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Contributing to VRPN with a new server for haptic devices (ext. version)

    Get PDF
    This article is an extended version of the poster paper: Cuevas-Rodriguez, M., Gonzalez-Toledo D., Molina-Tanco, L., Reyes-Lecuona A., 2015, November. “Contributing to VRPN with a new server for haptic devices”. In Proceedings of the ACM symposium on Virtual reality software and technology. ACM.http://dx.doi.org/10.1145/2821592.2821639VRPN is a middleware to access Virtual Reality peripherals. VRPN standard distribution supports Geomagic¼ (formerly Phantom) haptic devices through the now superseded GHOST library. This paper presents VRPN OpenHaptics Server, a contribution to VRPN library that fully reimplements VRPN support of Geomagic Haptic Devices. The implementation is based on the OpenHaptics v3.0 HLAPI layer, which supports all Geomagic Haptic Devices. We present the architecture of the contributed server, a detailed description of the offered API and an analysis of its performance in a set of example scenarios.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Web-based haptic applications for blind people to create virtual graphs

    Get PDF
    Haptic technology has great potentials in many applications. This paper introduces our work on delivery haptic information via the Web. A multimodal tool has been developed to allow blind people to create virtual graphs independently. Multimodal interactions in the process of graph creation and exploration are provided by using a low-cost haptic device, the Logitech WingMan Force Feedback Mouse, and Web audio. The Web-based tool also provides blind people with the convenience of receiving information at home. In this paper, we present the development of the tool and evaluation results. Discussions on the issues related to the design of similar Web-based haptic applications are also given

    Perceiving Mass in Mixed Reality through Pseudo-Haptic Rendering of Newton's Third Law

    Get PDF
    In mixed reality, real objects can be used to interact with virtual objects. However, unlike in the real world, real objects do not encounter any opposite reaction force when pushing against virtual objects. The lack of reaction force during manipulation prevents users from perceiving the mass of virtual objects. Although this could be addressed by equipping real objects with force-feedback devices, such a solution remains complex and impractical.In this work, we present a technique to produce an illusion of mass without any active force-feedback mechanism. This is achieved by simulating the effects of this reaction force in a purely visual way. A first study demonstrates that our technique indeed allows users to differentiate light virtual objects from heavy virtual objects. In addition, it shows that the illusion is immediately effective, with no prior training. In a second study, we measure the lowest mass difference (JND) that can be perceived with this technique. The effectiveness and ease of implementation of our solution provides an opportunity to enhance mixed reality interaction at no additional cost

    Haptic Experience and the Design of Drawing Interfaces

    Get PDF
    Haptic feedback has the potential to enhance users’ sense of being engaged and creative in their artwork. Current work on providing haptic feedback in computer-based drawing applications has focused mainly on the realism of the haptic sensation rather than the users’ experience of that sensation in the context of their creative work. We present a study that focuses on user experience of three haptic drawing interfaces. These interfaces were based on two different haptic metaphors, one of which mimicked familiar drawing tools (such as pen, pencil or crayon on smooth or rough paper) and the other of which drew on abstract descriptors of haptic experience (roughness, stickiness, scratchiness and smoothness). It was found that users valued having control over the haptic sensation; that each metaphor was preferred by approximately half of the participants; and that the real world metaphor interface was considered more helpful than the abstract one, whereas the abstract interface was considered to better support creativity. This suggests that future interfaces for artistic work should have user-modifiable interaction styles for controlling the haptic sensation

    Web-based multimodal graphs for visually impaired people

    Get PDF
    This paper describes the development and evaluation of Web-based multimodal graphs designed for visually impaired and blind people. The information in the graphs is conveyed to visually impaired people through haptic and audio channels. The motivation of this work is to address problems faced by visually impaired people in accessing graphical information on the Internet, particularly the common types of graphs for data visualization. In our work, line graphs, bar charts and pie charts are accessible through a force feedback device, the Logitech WingMan Force Feedback Mouse. Pre-recorded sound files are used to represent graph contents to users. In order to test the usability of the developed Web graphs, an evaluation was conducted with bar charts as the experimental platform. The results showed that the participants could successfully use the haptic and audio features to extract information from the Web graphs
    • 

    corecore