22,675 research outputs found

    Value of thermostatic loads in future low-carbon Great Britain system

    Get PDF
    This paper quantifies the value of a large population of heterogeneous thermostatically controlled loads (TCLs). The TCL dynamics are regulated by means of an advanced demand side response model (DSRM). It optimally determines the flexible energy/power consumption and simultaneously allocates multiple ancillary services. This model explicitly incorporates the control of dynamics of the TCL recovery pattern after the provision of the selected services. The proposed framework is integrated in a mixed integer linear programming formulation for a multi-stage stochastic unit commitment. The scheduling routine considers inertia-dependent frequency response requirements to deal with the drastic reduction of system inertia under future low-carbon scenarios. Case studies focus on the system operation cost and CO2 emissions reductions for individual TCLs for a) different future network scenarios, b) different frequency requirements, c) changes of TCL parameters (e.g. coefficient of performance, thermal insulation etc.)

    Review of the Proposed Reserve Markets in New England

    Get PDF
    ISO New England proposes reserve markets designed to improve the existing forward reserve market and improve pricing during real-time reserve shortages. We support all of the main elements of the proposal. For example, we agree that little is gained by allowing reserve availability bids in the day-ahead market. Doing so greatly increases the complexity of the market without the prospect of more efficient pricing. Rather, offline reserves are most efficiently priced and awarded well in advance, as is done by the improved forward reserve market.Auctions; Multiple Object Auctions; Electricity Auctions

    An Enterprise Control Assessment Method for Variable Energy Resource-Induced Power System Imbalances--Part II: Parametric Sensitivity Analysis

    Get PDF
    In recent years, renewable energy has developed to address energy security and climate change drivers. However, as energy resources, they possess a variable and uncertain nature that significantly complicates grid balancing operations. As a result, an extensive academic and industrial literature has developed to determine how much such variable energy resources (VERs) may be integrated and how to best mitigate their impacts. While certainly insightful with the context of their application, many integration studies have methodological limitations because they are case specific, address a single control function of the power grid balancing operations, and are often not validated by simulation. The prequel to this paper presented a holistic method for the assessment of power grid imbalances induced by VERs based upon the concept of enterprise control. This paper now systematically studies these power grid imbalances in terms of five independent variables: 1) day-ahead market time step; 2) real-time market time step; 3) VER normalized variability; 4) normalized day-ahead VER forecast error; and 5) normalized short-term VER forecast error. The systematic study elucidates the impacts of these variables and provides significant insights as to how planners should address these independent variables in the future

    An Enterprise Control Assessment Method for Variable Energy Resource-Induced Power System Imbalances--Part I: Methodology

    Get PDF
    In recent years, an extensive academic and industrial literature has been developed to determine how much such variable energy resources (VERs) may be integrated and how to best mitigate their impacts. While certainly insightful within the context of their application, many integration studies have methodological limitations in that they are case specific, address a single control function of power grid balancing operations, and are often not validated by simulation. This paper presents a holistic method for the assessment of power grid imbalances induced by VERs based upon the concept of enterprise control. It consists within a single package a three-layer enterprise control simulator which includes most of the balancing operation functionality found in traditional power systems. The control layers include a resource scheduling layer composed of a security-constrained unit commitment, a balancing layer composed of a security-constrained economic dispatch, and a regulation layer. The proposed method is validated by a set of numerical simulations. The sequel to this paper submitted to the same issue provides a set of extensive results that demonstrate how power grid balancing operations systematically address VER integration

    Eliminating the Flaws in New England's Reserve Markets

    Get PDF
    New England’s wholesale electricity market has been in operation, since May 1, 1999. When the market began it was understood that the rules were not perfect (Cramton and Wilson 1998). However, it was decided that it was better to start the market with imperfect rules, rather than postpone the market for an indefinite period. After several months of operation, we now have a sense of the extent market imperfections have resulted in observed problems. Here we study the three reserve markets—ten-minute spinning reserve (TMSR), ten-minute non-spinning reserve (TMNSR), and thirty-minute operating reserve (TMOR); we also discuss the closely related operable capability (OpCap) market. The paper covers the first four months of operation from May 1 to August 31, 1999. It is based on the market rules and their implementation by the ISO, and the market data during this period, including bidding, operating, and settlement information. Since that data are confidential, we have presented only aggregate information in the tables and figures that follow. Although this paper will cover only the reserves markets, we have studied the data from the energy, AGC, and capacity markets as well. Since all of the NEPOOL markets are interrelated, one cannot hope to understand one market without having an understanding of the others.Auctions, Electricity Auctions, Multiple Item Auctions

    Concepts for design of an energy management system incorporating dispersed storage and generation

    Get PDF
    New forms of generation based on renewable resources must be managed as part of existing power systems in order to be utilized with maximum effectiveness. Many of these generators are by their very nature dispersed or small, so that they will be connected to the distribution part of the power system. This situation poses new questions of control and protection, and the intermittent nature of some of the energy sources poses problems of scheduling and dispatch. Under the assumption that the general objectives of energy management will remain unchanged, the impact of dispersed storage and generation on some of the specific functions of power system control and its hardware are discussed

    Review of the Reserves and Operable Capability Markets: New England's Experience in the First Four Months

    Get PDF
    I review the performance of the operating reserves and the operable capability markets in New England. The review covers the first four months of operation from May 1 to August 31, 1999. The review is based on my knowledge of the market rules and their implementation by the ISO, and the market data during this period, including bidding, operating, and settlement information. In the review, I (1) identify the potential market flaws with these markets, (2) look at the performance of the markets to see if the potential problems have materialized, (3) evaluate the ISO's short-term remedies for these market flaws, and (4) propose alternative medium-term solutions to the identified problems. I find that the OpCap and reserve markets have serious flaws that must be addressed. The ISO's short-term fixes have been necessary and effective at addressing the immediate problems. However, better solutions can be adopted in the medium term. In particular, I recommend (1) eliminate the OpCap market, (2) establish a downward sloping demand curve for reserves, (3) pay the clearing price to all resources that provide the service, (4) establish the true real-time supply curve as simply the quantity of the resource made available in real time, (5) establish back down bids in the TMSR market (bids would be infrequent, perhaps monthly), (6) never set a price in the TMSR market less than the largest lost opportunity cost, (7) continue to cascade the quantities of the bids between operating reserve products, and (8) correct the classification of off-line units that provide a service that looks and acts like TMSR. All of these changes are consistent with the long-term solutions proposed for NEPOOL. These changes represent an important step toward the long-term solution involving multi-settlement energy and reserve markets. These markets should be designed carefully to address the basic economic and engineering issues necessary for an efficient wholesale electricity market.Auctions, Electricity Auctions, Multiple Item Auctions
    • …
    corecore