39,528 research outputs found

    Fair Coexistence of Scheduled and Random Access Wireless Networks: Unlicensed LTE/WiFi

    Get PDF
    We study the fair coexistence of scheduled and random access transmitters sharing the same frequency channel. Interest in coexistence is topical due to the need for emerging unlicensed LTE technologies to coexist fairly with WiFi. However, this interest is not confined to LTE/WiFi as coexistence is likely to become increasingly commonplace in IoT networks and beyond 5G. In this article we show that mixing scheduled and random access incurs and inherent throughput/delay cost, the cost of heterogeneity. We derive the joint proportional fair rate allocation, which casts useful light on current LTE/WiFi discussions. We present experimental results on inter-technology detection and consider the impact of imperfect carrier sensing.Comment: 14 pages, 8 figures, journa

    A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning

    Full text link
    Automatic decision-making approaches, such as reinforcement learning (RL), have been applied to (partially) solve the resource allocation problem adaptively in the cloud computing system. However, a complete cloud resource allocation framework exhibits high dimensions in state and action spaces, which prohibit the usefulness of traditional RL techniques. In addition, high power consumption has become one of the critical concerns in design and control of cloud computing systems, which degrades system reliability and increases cooling cost. An effective dynamic power management (DPM) policy should minimize power consumption while maintaining performance degradation within an acceptable level. Thus, a joint virtual machine (VM) resource allocation and power management framework is critical to the overall cloud computing system. Moreover, novel solution framework is necessary to address the even higher dimensions in state and action spaces. In this paper, we propose a novel hierarchical framework for solving the overall resource allocation and power management problem in cloud computing systems. The proposed hierarchical framework comprises a global tier for VM resource allocation to the servers and a local tier for distributed power management of local servers. The emerging deep reinforcement learning (DRL) technique, which can deal with complicated control problems with large state space, is adopted to solve the global tier problem. Furthermore, an autoencoder and a novel weight sharing structure are adopted to handle the high-dimensional state space and accelerate the convergence speed. On the other hand, the local tier of distributed server power managements comprises an LSTM based workload predictor and a model-free RL based power manager, operating in a distributed manner.Comment: accepted by 37th IEEE International Conference on Distributed Computing (ICDCS 2017

    Adaptive multi-channel MAC protocol for dense VANET with directional antennas

    No full text
    Directional antennas in Ad hoc networks offer more benefits than the traditional antennas with omni-directional mode. With directional antennas, it can increase the spatial reuse of the wireless channel. A higher gain of directional antennas makes terminals a further transmission range and fewer hops to the destination. This paper presents the design, implementation and simulation results of a multi-channel Medium Access Control (MAC) protocols for dense Vehicular Ad hoc Networks using directional antennas with local beam tables. Numeric results show that our protocol performs better than the existing multichannel protocols in vehicular environment

    MorphIC: A 65-nm 738k-Synapse/mm2^2 Quad-Core Binary-Weight Digital Neuromorphic Processor with Stochastic Spike-Driven Online Learning

    Full text link
    Recent trends in the field of neural network accelerators investigate weight quantization as a means to increase the resource- and power-efficiency of hardware devices. As full on-chip weight storage is necessary to avoid the high energy cost of off-chip memory accesses, memory reduction requirements for weight storage pushed toward the use of binary weights, which were demonstrated to have a limited accuracy reduction on many applications when quantization-aware training techniques are used. In parallel, spiking neural network (SNN) architectures are explored to further reduce power when processing sparse event-based data streams, while on-chip spike-based online learning appears as a key feature for applications constrained in power and resources during the training phase. However, designing power- and area-efficient spiking neural networks still requires the development of specific techniques in order to leverage on-chip online learning on binary weights without compromising the synapse density. In this work, we demonstrate MorphIC, a quad-core binary-weight digital neuromorphic processor embedding a stochastic version of the spike-driven synaptic plasticity (S-SDSP) learning rule and a hierarchical routing fabric for large-scale chip interconnection. The MorphIC SNN processor embeds a total of 2k leaky integrate-and-fire (LIF) neurons and more than two million plastic synapses for an active silicon area of 2.86mm2^2 in 65nm CMOS, achieving a high density of 738k synapses/mm2^2. MorphIC demonstrates an order-of-magnitude improvement in the area-accuracy tradeoff on the MNIST classification task compared to previously-proposed SNNs, while having no penalty in the energy-accuracy tradeoff.Comment: This document is the paper as accepted for publication in the IEEE Transactions on Biomedical Circuits and Systems journal (2019), the fully-edited paper is available at https://ieeexplore.ieee.org/document/876400

    Life-Add: Lifetime Adjustable Design for WiFi Networks with Heterogeneous Energy Supplies

    Get PDF
    WiFi usage significantly reduces the battery lifetime of handheld devices such as smartphones and tablets, due to its high energy consumption. In this paper, we propose "Life-Add": a Lifetime Adjustable design for WiFi networks, where the devices are powered by battery, electric power, and/or renewable energy. In Life-Add, a device turns off its radio to save energy when the channel is sensed to be busy, and sleeps for a random time period before sensing the channel again. Life-Add carefully controls the devices' average sleep periods to improve their throughput while satisfying their operation time requirement. It is proven that Life-Add achieves near-optimal proportional-fair utility performance for single access point (AP) scenarios. Moreover, Life-Add alleviates the near-far effect and hidden terminal problem in general multiple AP scenarios. Our ns-3 simulations show that Life-Add simultaneously improves the lifetime, throughput, and fairness performance of WiFi networks, and coexists harmoniously with IEEE 802.11.Comment: This is the technical report of our WiOpt paper. The paper received the best student paper award at IEEE WiOpt 2013. The first three authors are co-primary author
    • …
    corecore