259,748 research outputs found

    Width and mode of the profile for some random trees of logarithmic height

    Full text link
    We propose a new, direct, correlation-free approach based on central moments of profiles to the asymptotics of width (size of the most abundant level) in some random trees of logarithmic height. The approach is simple but gives precise estimates for expected width, central moments of the width and almost sure convergence. It is widely applicable to random trees of logarithmic height, including recursive trees, binary search trees, quad trees, plane-oriented ordered trees and other varieties of increasing trees.Comment: Published at http://dx.doi.org/10.1214/105051606000000187 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Effects of Thinning on Dynamics and Drought Resistance of Aspen-White Spruce Mixtures: Results From Two Study Sites in Saskatchewan

    Get PDF
    Drought stress associated with warm temperatures is causing increased mortality and reduced growth of trees in drier portions of the boreal forests of western Canada with both warming and drought expected to increase over the coming decades. While thinning is often shown to reduce drought stress, there is little information on its effects in stands comprised of mixtures of trembling aspen and white spruce that are common in the forests of this region. This study examined effects of pre-commercial thinning on aspen and spruce growth, response to drought stress, and stand dynamics for two study sites located in Saskatchewan, Canada. In unthinned plots aspen densities declined from initial densities of 40,000 to 200,000 trees ha−1 to 2,639 trees ha−1 at age 26. Twenty-one years after thinning (i.e., at age 26) diameter of aspen and spruce had increased, with largest trees being found at the lowest aspen densities (200 aspen ha−1 for aspen and 0 aspen ha−1 for spruce). Aspen density affected average height but not height of aspen top height trees. Spruce height decreased significantly with increasing aspen density. Crown width and live crown ratio of both aspen and spruce declined with increasing aspen density. Data from cores collected from aspen and spruce indicate significant positive effects of tree size (basal area at beginning of the year), and CMI (Climate Moisture Index) on basal area increment of both aspen and spruce while increasing aspen basal area (m2ha−1) had negative effects on aspen and spruce growth. Increasing tree size (basal area) and aspen competition (basal area ha−1) both had negative effects on drought resistance and resilience for both aspen and spruce. Yield projections provided by the Mixedwood Growth Model (MGM) suggest that the mixture of 1,500 aspen ha−1 and 1,000 spruce ha−1 has the potential to provide a 23% increase in total mean annual increment (MAI) with a single harvest at age 100, compared to unthinned aspen stands, but with a 44% reduction in spruce MAI compared to pure spruce stands. Thinning of aspen to densities below 4,000 trees ha−1 at age 5 resulted in reduced aspen yields but increased spruce yields

    Impact of pine looper defoliation in Scots pine

    Get PDF
    Widespread defoliation of forests caused by insects or fungi cause economic losses throughout the world. Successful outbreak management involves cost/benefit estimation and requires knowledge of potential yield losses. Currently, such knowledge is scarce. This thesis evaluates the significance of single-year defoliation by the pine looper moth (Bupalus piniaria L.) (Lepidoptera: Geometridae) and secondary attack by the pine shoot beetle (Tomicus piniperda L.) (Coleoptera: Scolytinae) for yield losses in Scots pine (Pinus sylvestris L.). In a seven-year study, tree mortality and growth losses were quantified after a B. piniaria outbreak with a subsequent T. piniperda infestation at Hökensås in 1996. Secondary attack by T. piniperda was also studied in a Scots pine stand at Fredriksberg, infested by Gremmeniella abietina (Lagerberg) Morelet. in 2001. Tree mortality at Hökensås mainly occurred in areas with an average defoliation intensity of 90-100%. Tree mortality averaged 25%, and the “defoliation threshold” for tree survival was found to be 90% defoliation. Tree mortality peaked two years after the defoliation event, which coincided with high levels of pine shoot beetles. Involvement of T. piniperda in tree mortality increased with time since defoliation, and tree susceptibility to beetle attack increased with increasing defoliation intensity and decreasing dominance status of trees. As foliage of trees recovered, fewer trees were susceptible to beetle attack, and ultimately, beetle attacks ended as breeding substrate was depleted. Tree susceptibility to beetle attack was a function of tree vigour and beetle density. Growth losses at the Hökensås site were a combined effect of pine looper defoliation and shoot pruning by T. piniperda. Radial, height and volume growth losses were proportional to defoliation intensity. Whereas radial growth was little affected by beetle-induced shoot pruning, height growth was severely affected by beetle-induced damage to leading shoots. Growth losses alone, excluding tree mortality, were large enough to economically justify control of the pine looper outbreak had the outbreak been prevented in 1996. At Fredriksberg, T. piniperda colonised trees that would have survived the damage caused by G. abietina. However, trees with 90-100% foliage losses died because of the damage caused by G. abietina alone, and tree survival seemed to require that trees retained at least 20% of full foliage

    Comparison of energy-wood and pulpwood thinning systems in young birch stands

    Get PDF
    In early thinnings, a profitable alternative to pulpwood could be to harvest whole trees as energy-wood. In theoretical analyses, we compared the extractible volumes of energy-wood and pulpwood, and their respective gross values in differently aged stands of early birch thinnings at varying intensities of removal. In a parallel field experiment, we compared the productivity at harvest of either pulpwood or energy-wood, and the profitability when the costs of harvesting and forwarding were included. The theoretical analyses showed that the proportion of the total tree biomass removed as pulpwood increased with increasing thinning intensity and stem size. The biomass volume was 1.5–1.7 times larger than the pulpwood volume for a 13.9 diameter at breast height stand and 2.0–3.5 times larger for a 10.4 diameter at breast height stand. In the field experiment, the harvested volume per hectare of energy-wood was almost twice as high as the harvest of pulpwood. The harvesting productivity (trees Productive harvesting Work Time-hour−1) was 205 in the energy-wood and 120 in the pulpwood treatment. The pulpwood treatment generated a net loss, whereas the energy-wood treatment generated a net income, the average difference being €595 ha−1. We conclude that in birch-dominated early thinning stands, at current market prices, harvesting energy-wood is more profitable than harvesting pulpwood

    Taller and slenderer trees in Swedish forests according to data from the National Forest Inventory

    Get PDF
    Changes over time in annual basal area growth and mean height for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) over the period, 1983-2020 were studied using sample tree data from temporary plots recorded in the Swedish National Forest Inventory. The annual basal area growth was derived from the last measured full ring on increment cores. Using 20 to 60-year-old dominant trees, the mean height and annual basal area growth were examined as functions of tree, stand and site conditions, and trends were assessed mainly using residual analyses over time. A significant increase in mean height at a given age was found for both species, but the annual basal area growth level remained stable over the 38-year period. Currently, at a given age of 50 annual rings at breast height, the mean heights of pines and spruces increased on average by 10.1% (i.e. similar to 2 m), compared to 50 year-old pines and spruces in the 1980s, and the increase was similar in the different regions. The results suggest that trees have become taller and slenderer in Swedish forests. Increasing tree height over time at a given age in Northern Europe has been documented in several reports and many causes have been suggested, such as changed forest management, increasing temperatures and nitrogen deposition. We suggest that elevated CO2 in the air and improved water-use efficiency for the trees might also be strong drivers

    PENENTUAN TINGKAT KOMPETISI TAJUK TEGAKAN JATI HASIL UJI KETURUNAN UMUR 11 TAHUN DI KPH NGAWI

    Get PDF
    The increasing demand of teak wood should be followed by the increasing of teak forest productivity through intensive silviculture, especially growing space manipulation. The main objective of this research was to determine the growing space competition. The material was measurement data from eleven year progeny test located at the compartment 49a, RPH Sidowayah, BKPH Kedunggalar, KPH Ngawi. The growing space competition was calculated using Hegyi\u27s competition index. Superior trees were selected to determine competition zone of the subject tree and this result wasproposed to calculate the competition index of all trees. Based on the correlation between competition index and tree height, vertical structure was then classified using k-means cluster. Based on 300 superior trees, the competition zone could be determined using reference angle of 66°. The competition index was vary in between 0.00 and 4.23 with average value of 1.18. The correlation between the index and the tree height was found to be low with r = -0.227. Based on this correlation, the vertical structure was classified into four level namely dominant, co-dominant, medium, and suppressed respectively

    Ascent Sequences Avoiding Pairs of Patterns

    Get PDF
    Ascent sequences were introduced by Bousquet-Melou et al. in connection with (2+2)-avoiding posets and their pattern avoidance properties were first considered by Duncan and Steingrímsson. In this paper, we consider ascent sequences of length n role= presentation style= display: inline; font-size: 11.2px; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; font-family: Verdana, Arial, Helvetica, sans-serif; position: relative; \u3enn avoiding two patterns of length 3, and we determine an exact enumeration for 16 different pairs of patterns. Methods include simple recurrences, bijections to other combinatorial objects (including Dyck paths and pattern-avoiding permutations), and generating trees. We also provide an analogue of the Erdős-Szekeres Theorem to prove that any sufficiently long ascent sequence contains either many copies of the same number or a long increasing subsequence, with a precise bound
    corecore