1,827 research outputs found

    An Efficient Hybrid Ant Colony System for the Generalized Traveling Salesman Problem

    Get PDF
    The Generalized Traveling Salesman Problem (GTSP) is an extension of the well-known Traveling Salesman Problem (TSP), where the node set is partitioned into clusters, and the objective is to find the shortest cycle visiting each cluster exactly once. In this paper, we present a new hybrid Ant Colony System (ACS) algorithm for the symmetric GTSP. The proposed algorithm is a modification of a simple ACS for the TSP improved by an efficient GTSP-specific local search procedure. Our extensive computational experiments show that the use of the local search procedure dramatically improves the performance of the ACS algorithm, making it one of the most successful GTSP metaheuristics to date.Comment: 7 page

    Parallel ACO with a Ring Neighborhood for Dynamic TSP

    Full text link
    The current paper introduces a new parallel computing technique based on ant colony optimization for a dynamic routing problem. In the dynamic traveling salesman problem the distances between cities as travel times are no longer fixed. The new technique uses a parallel model for a problem variant that allows a slight movement of nodes within their Neighborhoods. The algorithm is tested with success on several large data sets.Comment: 8 pages, 1 figure; accepted J. Information Technology Researc

    Lin-Kernighan Heuristic Adaptations for the Generalized Traveling Salesman Problem

    Get PDF
    The Lin-Kernighan heuristic is known to be one of the most successful heuristics for the Traveling Salesman Problem (TSP). It has also proven its efficiency in application to some other problems. In this paper we discuss possible adaptations of TSP heuristics for the Generalized Traveling Salesman Problem (GTSP) and focus on the case of the Lin-Kernighan algorithm. At first, we provide an easy-to-understand description of the original Lin-Kernighan heuristic. Then we propose several adaptations, both trivial and complicated. Finally, we conduct a fair competition between all the variations of the Lin-Kernighan adaptation and some other GTSP heuristics. It appears that our adaptation of the Lin-Kernighan algorithm for the GTSP reproduces the success of the original heuristic. Different variations of our adaptation outperform all other heuristics in a wide range of trade-offs between solution quality and running time, making Lin-Kernighan the state-of-the-art GTSP local search.Comment: 25 page

    Bio-inspired Algorithms for TSP and Generalized TSP

    Get PDF
    • …
    corecore