65 research outputs found

    The generalized Lasso with non-linear observations

    Full text link
    We study the problem of signal estimation from non-linear observations when the signal belongs to a low-dimensional set buried in a high-dimensional space. A rough heuristic often used in practice postulates that non-linear observations may be treated as noisy linear observations, and thus the signal may be estimated using the generalized Lasso. This is appealing because of the abundance of efficient, specialized solvers for this program. Just as noise may be diminished by projecting onto the lower dimensional space, the error from modeling non-linear observations with linear observations will be greatly reduced when using the signal structure in the reconstruction. We allow general signal structure, only assuming that the signal belongs to some set K in R^n. We consider the single-index model of non-linearity. Our theory allows the non-linearity to be discontinuous, not one-to-one and even unknown. We assume a random Gaussian model for the measurement matrix, but allow the rows to have an unknown covariance matrix. As special cases of our results, we recover near-optimal theory for noisy linear observations, and also give the first theoretical accuracy guarantee for 1-bit compressed sensing with unknown covariance matrix of the measurement vectors.Comment: 21 page

    A Geometric View on Constrained M-Estimators

    Get PDF
    We study the estimation error of constrained M-estimators, and derive explicit upper bounds on the expected estimation error determined by the Gaussian width of the constraint set. Both of the cases where the true parameter is on the boundary of the constraint set (matched constraint), and where the true parameter is strictly in the constraint set (mismatched constraint) are considered. For both cases, we derive novel universal estimation error bounds for regression in a generalized linear model with the canonical link function. Our error bound for the mismatched constraint case is minimax optimal in terms of its dependence on the sample size, for Gaussian linear regression by the Lasso

    Phase Retrieval From Binary Measurements

    Full text link
    We consider the problem of signal reconstruction from quadratic measurements that are encoded as +1 or -1 depending on whether they exceed a predetermined positive threshold or not. Binary measurements are fast to acquire and inexpensive in terms of hardware. We formulate the problem of signal reconstruction using a consistency criterion, wherein one seeks to find a signal that is in agreement with the measurements. To enforce consistency, we construct a convex cost using a one-sided quadratic penalty and minimize it using an iterative accelerated projected gradient-descent (APGD) technique. The PGD scheme reduces the cost function in each iteration, whereas incorporating momentum into PGD, notwithstanding the lack of such a descent property, exhibits faster convergence than PGD empirically. We refer to the resulting algorithm as binary phase retrieval (BPR). Considering additive white noise contamination prior to quantization, we also derive the Cramer-Rao Bound (CRB) for the binary encoding model. Experimental results demonstrate that the BPR algorithm yields a signal-to- reconstruction error ratio (SRER) of approximately 25 dB in the absence of noise. In the presence of noise prior to quantization, the SRER is within 2 to 3 dB of the CRB

    A simple tool for bounding the deviation of random matrices on geometric sets

    Full text link
    Let AA be an isotropic, sub-gaussian m×nm \times n matrix. We prove that the process Zx:=∥Ax∥2−m∥x∥2Z_x := \|Ax\|_2 - \sqrt m \|x\|_2 has sub-gaussian increments. Using this, we show that for any bounded set T⊆RnT \subseteq \mathbb{R}^n, the deviation of ∥Ax∥2\|Ax\|_2 around its mean is uniformly bounded by the Gaussian complexity of TT. We also prove a local version of this theorem, which allows for unbounded sets. These theorems have various applications, some of which are reviewed in this paper. In particular, we give a new result regarding model selection in the constrained linear model.Comment: 16 pages. Minor correction
    • …
    corecore