3,155 research outputs found

    Entropies, convexity, and functional inequalities

    Full text link
    Our aim is to provide a short and self contained synthesis which generalise and unify various related and unrelated works involving what we call Phi-Sobolev functional inequalities. Such inequalities related to Phi-entropies can be seen in particular as an inclusive interpolation between Poincare and Gross logarithmic Sobolev inequalities. In addition to the known material, extensions are provided and improvements are given for some aspects. Stability by tensor products, convolution, and bounded perturbations are addressed. We show that under simple convexity assumptions on Phi, such inequalities hold in a lot of situations, including hyper-contractive diffusions, uniformly strictly log-concave measures, Wiener measure (paths space of Brownian Motion on Riemannian Manifolds) and generic Poisson space (includes paths space of some pure jumps Levy processes and related infinitely divisible laws). Proofs are simple and relies essentially on convexity. We end up by a short parallel inspired by the analogy with Boltzmann-Shannon entropy appearing in Kinetic Gases and Information Theories.Comment: Formerly "On Phi-entropies and Phi-Sobolev inequalities". Author's www homepage: http://www.lsp.ups-tlse.fr/Chafai

    A continuous analogue of the tensor-train decomposition

    Full text link
    We develop new approximation algorithms and data structures for representing and computing with multivariate functions using the functional tensor-train (FT), a continuous extension of the tensor-train (TT) decomposition. The FT represents functions using a tensor-train ansatz by replacing the three-dimensional TT cores with univariate matrix-valued functions. The main contribution of this paper is a framework to compute the FT that employs adaptive approximations of univariate fibers, and that is not tied to any tensorized discretization. The algorithm can be coupled with any univariate linear or nonlinear approximation procedure. We demonstrate that this approach can generate multivariate function approximations that are several orders of magnitude more accurate, for the same cost, than those based on the conventional approach of compressing the coefficient tensor of a tensor-product basis. Our approach is in the spirit of other continuous computation packages such as Chebfun, and yields an algorithm which requires the computation of "continuous" matrix factorizations such as the LU and QR decompositions of vector-valued functions. To support these developments, we describe continuous versions of an approximate maximum-volume cross approximation algorithm and of a rounding algorithm that re-approximates an FT by one of lower ranks. We demonstrate that our technique improves accuracy and robustness, compared to TT and quantics-TT approaches with fixed parameterizations, of high-dimensional integration, differentiation, and approximation of functions with local features such as discontinuities and other nonlinearities

    Quasi maximum likelihood estimation for strongly mixing state space models and multivariate L\'evy-driven CARMA processes

    Full text link
    We consider quasi maximum likelihood (QML) estimation for general non-Gaussian discrete-ime linear state space models and equidistantly observed multivariate L\'evy-driven continuoustime autoregressive moving average (MCARMA) processes. In the discrete-time setting, we prove strong consistency and asymptotic normality of the QML estimator under standard moment assumptions and a strong-mixing condition on the output process of the state space model. In the second part of the paper, we investigate probabilistic and analytical properties of equidistantly sampled continuous-time state space models and apply our results from the discrete-time setting to derive the asymptotic properties of the QML estimator of discretely recorded MCARMA processes. Under natural identifiability conditions, the estimators are again consistent and asymptotically normally distributed for any sampling frequency. We also demonstrate the practical applicability of our method through a simulation study and a data example from econometrics

    Intraday forecasts of a volatility index: Functional time series methods with dynamic updating

    Full text link
    As a forward-looking measure of future equity market volatility, the VIX index has gained immense popularity in recent years to become a key measure of risk for market analysts and academics. We consider discrete reported intraday VIX tick values as realisations of a collection of curves observed sequentially on equally spaced and dense grids over time and utilise functional data analysis techniques to produce one-day-ahead forecasts of these curves. The proposed method facilitates the investigation of dynamic changes in the index over very short time intervals as showcased using the 15-second high-frequency VIX index values. With the help of dynamic updating techniques, our point and interval forecasts are shown to enjoy improved accuracy over conventional time series models.Comment: 29 pages, 5 figures, To appear at the Annals of Operations Researc

    Analytic urns

    Full text link
    This article describes a purely analytic approach to urn models of the generalized or extended P\'olya-Eggenberger type, in the case of two types of balls and constant ``balance,'' that is, constant row sum. The treatment starts from a quasilinear first-order partial differential equation associated with a combinatorial renormalization of the model and bases itself on elementary conformal mapping arguments coupled with singularity analysis techniques. Probabilistic consequences in the case of ``subtractive'' urns are new representations for the probability distribution of the urn's composition at any time n, structural information on the shape of moments of all orders, estimates of the speed of convergence to the Gaussian limit and an explicit determination of the associated large deviation function. In the general case, analytic solutions involve Abelian integrals over the Fermat curve x^h+y^h=1. Several urn models, including a classical one associated with balanced trees (2-3 trees and fringe-balanced search trees) and related to a previous study of Panholzer and Prodinger, as well as all urns of balance 1 or 2 and a sporadic urn of balance 3, are shown to admit of explicit representations in terms of Weierstra\ss elliptic functions: these elliptic models appear precisely to correspond to regular tessellations of the Euclidean plane.Comment: Published at http://dx.doi.org/10.1214/009117905000000026 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore