283 research outputs found

    The extended hypergeometric class of Lévy processes

    Get PDF
    We review and extend the class of hypergeometric Lévy processes explored in Kuznetsov and Pardo (2013) with a view to computing fluctuation identities related to stable processes. We give the Wiener-Hopf factorisation of a process in the extended class, characterise its exponential functional, and give three concrete examples arising from transformations of stable processes. <br/

    Double hypergeometric Lévy processes and self-similarity

    Get PDF
    Motivated by a recent paper of Budd, where a new family of positive self-similar Markov processes associated to stable processes appears, we introduce a new family of Lévy processes, called the double hypergeometric class, whose Wiener-Hopf factorisation is explicit, and as a result many functionals can be determined in closed form

    A growth-fragmentation connected to the ricocheted stable process

    Get PDF
    Growth-fragmentation processes describe the evolution of systems in which cells grow slowly and fragment suddenly. Despite originating as a way to describe biological phenomena, they have recently been found to describe the lengths of certain curves in statistical physics models. In this note, we describe a new growth-fragmentation connected to random planar maps with faces of large degree, having as a key ingredient the ricocheted stable process recently discovered by Budd. The process has applications to the excursions of planar Brownian motion and Liouville quantum gravity.Comment: 12 pages. v3 makes minor descriptive changes and adds Corollary

    DATA-DRIVEN MODELING AND SIMULATIONS OF SEISMIC WAVES

    Get PDF
    In recent decades, nonlocal models have been proved to be very effective in the study of complex processes and multiscale phenomena arising in many fields, such as quantum mechanics, geophysics, and cardiac electrophysiology. The fractional Laplacian(−Δ)/2 can be reviewed as nonlocal generalization of the classical Laplacian which has been widely used for the description of memory and hereditary properties of various material and process. However, the nonlocality property of fractional Laplacian introduces challenges in mathematical analysis and computation. Compared to the classical Laplacian, existing numerical methods for the fractional Laplacian still remain limited. The objectives of this research are to develop new numerical methods to solve nonlocal models with fractional Laplacian and apply them to study seismic wave modeling in both homogeneous and heterogeneous media. To this end, we have developed two classes of methods: meshfree pseudospectral method and operator factorization methods. Compared to the current state-of-the-art methods, both of them can achieve higher accuracy with less computational complexity. The operator factorization methods provide a general framework, allowing one to achieve better accuracy with high-degree Lagrange basis functions. The meshfree pseudospectral methods based on global radial basis functions can solve both classical and fractional Laplacians in a single scheme which are the first compatible methods for these two distinct operators. Numerical experiments have demonstrated the effectiveness of our methods on various nonlocal problems. Moreover, we present an extensive study of the variable-order Laplacian operator (−Δ)(x)/2 by using meshfree methods both analytically and numerically. Finally, we apply our numerical methods to solve seismic wave modeling and study the nonlocal effects of fractional wave equation --Abstract, p. i

    Stable Processes

    Get PDF

    The hitting time of zero for a stable process

    Get PDF
    For any two-sided jumping α\alpha-stable process, where 1<α<21 < \alpha < 2, we find an explicit identity for the law of the first hitting time of the origin. This complements existing work in the symmetric case and the spectrally one-sided case; cf. Yano-Yano-Yor (2009) and Cordero (2010), and Peskir (2008) respectively. We appeal to the Lamperti-Kiu representation of Chaumont-Pant\'i-Rivero (2011) for real-valued self-similar Markov processes. Our main result follows by considering a vector-valued functional equation for the Mellin transform of the integrated exponential Markov additive process in the Lamperti-Kiu representation. We conclude our presentation with some applications
    • …
    corecore