1,496 research outputs found

    A Characterization of all Solutions to the Four Block General Distance Problem

    Get PDF
    All solutions to the four block general distance problem which arises in H^∞ optimal control are characterized. The procedure is to embed the original problem in an all-pass matrix which is constructed. It is then shown that part of this all-pass matrix acts as a generator of all solutions. Special attention is given to the characterization of all optimal solutions by invoking a new descriptor characterization of all-pass transfer functions. As an application, necessary and sufficient conditions are found for the existence of an H^∞ optimal controller. Following that, a descriptor representation of all solutions is derived

    Computational issues in fault detection filter design

    Get PDF
    We discuss computational issues encountered in the design of residual generators for dynamic inversion based fault detection filters. The two main computational problems in determining a proper and stable residual generator are the computation of an appropriate leftinverse of the fault-system and the computation of coprime factorizations with proper and stable factors. We discuss numerically reliable approaches for both of these computations relying on matrix pencil approaches and recursive pole assignment techniques for descriptor systems. The proposed computational approach to design fault detection filters is completely general and can easily handle even unstable and/or improper systems

    Computational exploration of molecular receptive fields in the olfactory bulb reveals a glomerulus-centric chemical map

    Get PDF
    © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Progress in olfactory research is currently hampered by incomplete knowledge about chemical receptive ranges of primary receptors. Moreover, the chemical logic underlying the arrangement of computational units in the olfactory bulb has still not been resolved. We undertook a large-scale approach at characterising molecular receptive ranges (MRRs) of glomeruli in the dorsal olfactory bulb (dOB) innervated by the MOR18-2 olfactory receptor, also known as Olfr78, with human ortholog OR51E2. Guided by an iterative approach that combined biological screening and machine learning, we selected 214 odorants to characterise the response of MOR18-2 and its neighbouring glomeruli. We found that a combination of conventional physico-chemical and vibrational molecular descriptors performed best in predicting glomerular responses using nonlinear Support-Vector Regression. We also discovered several previously unknown odorants activating MOR18-2 glomeruli, and obtained detailed MRRs of MOR18-2 glomeruli and their neighbours. Our results confirm earlier findings that demonstrated tunotopy, that is, glomeruli with similar tuning curves tend to be located in spatial proximity in the dOB. In addition, our results indicate chemotopy, that is, a preference for glomeruli with similar physico-chemical MRR descriptions being located in spatial proximity. Together, these findings suggest the existence of a partial chemical map underlying glomerular arrangement in the dOB. Our methodology that combines machine learning and physiological measurements lights the way towards future high-throughput studies to deorphanise and characterise structure-activity relationships in olfaction.Peer reviewe

    An efficient projector-based passivity test for descriptor systems

    Get PDF
    An efficient passivity test based on canonical projector techniques is proposed for descriptor systems (DSs) widely encountered in circuit and system modeling. The test features a natural flow that first evaluates the index of a DS, followed by possible decoupling into its proper and improper subsystems. Explicit state-space formulations for respective subsystems are derived to facilitate further processing such as model order reduction and/or passivity enforcement. Efficient projector construction and a fast generalized Hamiltonian test for the proper-part passivity are also elaborated. Numerical examples then confirm the superiority of the proposed method over existing passivity tests for DSs based on linear matrix inequalities or skew-Hamiltonian/Hamiltonian matrix pencils. © 2010 IEEE.published_or_final_versio
    • …
    corecore