5,190 research outputs found

    From Free Fields to AdS -- II

    Get PDF
    We continue with the program of hep-th/0308184 to implement open-closed string duality on free gauge field theory (in the large NN limit). In this paper we consider correlators such as \la \prod_{i=1}^n \Tr\Phi^{J_i}(x_i)\ra. The Schwinger parametrisation of this nn-point function exhibits a partial gluing up into a set of basic skeleton graphs. We argue that the moduli space of the planar skeleton graphs is exactly the same as the moduli space of genus zero Riemann surfaces with nn holes. In other words, we can explicitly rewrite the nn-point (planar) free field correlator as an integral over the moduli space of a sphere with nn holes. A preliminary study of the integrand also indicates compatibility with a string theory on AdSAdS. The details of our argument are quite insensitive to the specific form of the operators and generalise to diagrams of higher genus as well. We take this as evidence of the field theory's ability to reorganise itself into a string theory.Comment: 26 pages, 2 figures; v2. some additional comments, references adde

    Convergent expansions for Random Cluster Model with q>0 on infinite graphs

    Full text link
    In this paper we extend our previous results on the connectivity functions and pressure of the Random Cluster Model in the highly subcritical phase and in the highly supercritical phase, originally proved only on the cubic lattice Zd\Z^d, to a much wider class of infinite graphs. In particular, concerning the subcritical regime, we show that the connectivity functions are analytic and decay exponentially in any bounded degree graph. In the supercritical phase, we are able to prove the analyticity of finite connectivity functions in a smaller class of graphs, namely, bounded degree graphs with the so called minimal cut-set property and satisfying a (very mild) isoperimetric inequality. On the other hand we show that the large distances decay of finite connectivity in the supercritical regime can be polynomially slow depending on the topological structure of the graph. Analogous analyticity results are obtained for the pressure of the Random Cluster Model on an infinite graph, but with the further assumptions of amenability and quasi-transitivity of the graph.Comment: In this new version the introduction has been revised, some references have been added, and many typos have been corrected. 37 pages, to appear in Communications on Pure and Applied Analysi

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Spatially embedded random networks

    No full text
    Many real-world networks analyzed in modern network theory have a natural spatial element; e.g., the Internet, social networks, neural networks, etc. Yet, aside from a comparatively small number of somewhat specialized and domain-specific studies, the spatial element is mostly ignored and, in particular, its relation to network structure disregarded. In this paper we introduce a model framework to analyze the mediation of network structure by spatial embedding; specifically, we model connectivity as dependent on the distance between network nodes. Our spatially embedded random networks construction is not primarily intended as an accurate model of any specific class of real-world networks, but rather to gain intuition for the effects of spatial embedding on network structure; nevertheless we are able to demonstrate, in a quite general setting, some constraints of spatial embedding on connectivity such as the effects of spatial symmetry, conditions for scale free degree distributions and the existence of small-world spatial networks. We also derive some standard structural statistics for spatially embedded networks and illustrate the application of our model framework with concrete examples

    Subgraphs in random networks

    Full text link
    Understanding the subgraph distribution in random networks is important for modelling complex systems. In classic Erdos networks, which exhibit a Poissonian degree distribution, the number of appearances of a subgraph G with n nodes and g edges scales with network size as \mean{G} ~ N^{n-g}. However, many natural networks have a non-Poissonian degree distribution. Here we present approximate equations for the average number of subgraphs in an ensemble of random sparse directed networks, characterized by an arbitrary degree sequence. We find new scaling rules for the commonly occurring case of directed scale-free networks, in which the outgoing degree distribution scales as P(k) ~ k^{-\gamma}. Considering the power exponent of the degree distribution, \gamma, as a control parameter, we show that random networks exhibit transitions between three regimes. In each regime the subgraph number of appearances follows a different scaling law, \mean{G} ~ N^{\alpha}, where \alpha=n-g+s-1 for \gamma<2, \alpha=n-g+s+1-\gamma for 2<\gamma<\gamma_c, and \alpha=n-g for \gamma>\gamma_c, s is the maximal outdegree in the subgraph, and \gamma_c=s+1. We find that certain subgraphs appear much more frequently than in Erdos networks. These results are in very good agreement with numerical simulations. This has implications for detecting network motifs, subgraphs that occur in natural networks significantly more than in their randomized counterparts.Comment: 8 pages, 5 figure

    Spanning Trees and Spanning Eulerian Subgraphs with Small Degrees. II

    Full text link
    Let GG be a connected graph with XV(G)X\subseteq V(G) and with the spanning forest FF. Let λ[0,1]\lambda\in [0,1] be a real number and let η:X(λ,)\eta:X\rightarrow (\lambda,\infty) be a real function. In this paper, we show that if for all SXS\subseteq X, ω(GS)vS(η(v)2)+2λ(eG(S)+1)\omega(G\setminus S)\le\sum_{v\in S}\big(\eta(v)-2\big)+2-\lambda(e_G(S)+1), then GG has a spanning tree TT containing FF such that for each vertex vXv\in X, dT(v)η(v)λ+max{0,dF(v)1}d_T(v)\le \lceil\eta(v)-\lambda\rceil+\max\{0,d_F(v)-1\}, where ω(GS)\omega(G\setminus S) denotes the number of components of GSG\setminus S and eG(S)e_G(S) denotes the number of edges of GG with both ends in SS. This is an improvement of several results and the condition is best possible. Next, we also investigate an extension for this result and deduce that every kk-edge-connected graph GG has a spanning subgraph HH containing mm edge-disjoint spanning trees such that for each vertex vv, dH(v)mk(dG(v)2m)+2md_H(v)\le \big\lceil \frac{m}{k}(d_G(v)-2m)\big\rceil+2m, where k2mk\ge 2m; also if GG contains kk edge-disjoint spanning trees, then HH can be found such that for each vertex vv, dH(v)mk(dG(v)m)+md_H(v)\le \big\lceil \frac{m}{k}(d_G(v)-m)\big\rceil+m, where kmk\ge m. Finally, we show that strongly 22-tough graphs, including (3+1/2)(3+1/2)-tough graphs of order at least three, have spanning Eulerian subgraphs whose degrees lie in the set {2,4}\{2,4\}. In addition, we show that every 11-tough graph has spanning closed walk meeting each vertex at most 22 times and prove a long-standing conjecture due to Jackson and Wormald (1990).Comment: 46 pages, Keywords: Spanning tree; spanning Eulerian; spanning closed walk; connected factor; toughness; total exces

    The random K-satisfiability problem: from an analytic solution to an efficient algorithm

    Full text link
    We study the problem of satisfiability of randomly chosen clauses, each with K Boolean variables. Using the cavity method at zero temperature, we find the phase diagram for the K=3 case. We show the existence of an intermediate phase in the satisfiable region, where the proliferation of metastable states is at the origin of the slowdown of search algorithms. The fundamental order parameter introduced in the cavity method, which consists of surveys of local magnetic fields in the various possible states of the system, can be computed for one given sample. These surveys can be used to invent new types of algorithms for solving hard combinatorial optimizations problems. One such algorithm is shown here for the 3-sat problem, with very good performances.Comment: 38 pages, 13 figures; corrected typo
    corecore