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Abstract

We continue with the program of hep-th/0308184 to implement open-closed string

duality on free gauge field theory (in the large N limit). In this paper we consider corre-

lators such as 〈
∏n

i=1 TrΦJi(xi)〉. The Schwinger parametrisation of this n-point function

exhibits a partial gluing up into a set of basic skeleton graphs. We argue that the mod-

uli space of the planar skeleton graphs is exactly the same as the moduli space of genus

zero Riemann surfaces with n holes. In other words, we can explicitly rewrite the n-point

(planar) free field correlator as an integral over the moduli space of a sphere with n holes.

A preliminary study of the integrand also indicates compatibility with a string theory on

AdS. The details of our argument are quite insensitive to the specific form of the operators

and generalise to diagrams of higher genus as well. We take this as evidence of the field

theory’s ability to reorganise itself into a string theory.
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1. Introduction

How exactly does a quantum field theory (in the large N limit) reassemble itself into

a closed string theory? This question lies at the heart of the gauge theory/geometry

correspondence. Answering it in its generality is likely to give us valuable clues regarding

the string dual to QCD, for instance.

What we have learnt in the years since Maldacena’s breakthrough is that the answer

to this question is tied up with open-closed string duality. The gauge theory arising in

an open string description is related by worldsheet duality to a closed string description.

The holes of the open string worldsheet get glued up, getting replaced by closed string

insertions.

In the case of topological string dualities it was possible [1][2] to make this intuition

precise using a linear sigma model description of the worldsheet (the argument for the

corresponding F-terms in the superstring was made in [3]). Recently, a very nice illustration

of open-closed string duality was given, again in a topological context, for the Kontsevich

matrix model [4]. Here again, one could concretely see the process of holes closing up and

being replaced by closed string insertions.

Nevertheless, the original AdS/CFT conjecture [5][6][7] has not yet been understood

in such terms.2 In [11] we embarked on an effort to implement open-closed string duality in

2 The recent proposals [8][9](see also [10]) that N = 4 Yang-Mills arises as the target space

theory of a topological sigma model might, perhaps, enable one to view it in a manner close to

the other topological examples.
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the free field limit of the N = 4 Super Yang-Mills theory. The tractability of the limit, from

the field theory point of view, makes it a natural starting point.3 The strategy in [11] was to

consider a worldline representation (Schwinger parametrisation) of the free field correlators.

This was motivated by the fact that these representations can be viewed as being directly

inherited from the relevant open string theory in the α′ → ∞ limit. A nice feature of

this representation is its correspondence with electrical networks. This correspondence

suggested that carrying out the integration over the internal loop momenta (eliminating

internal currents) should yield an equivalent network, now with a tree-like structure. In

other words, the holes would have been closed up. The idea was then, through a change of

variables on the Schwinger moduli space, to exhibit the integral as that of a closed string

tree amplitude on AdS.

In [11] we restricted ourselves to bilinear operators (such as TrΦ2). The n point

function of these operators is given by a one loop diagram. For the case of two and three

point functions the equivalent tree diagrams are the expected ones. A simple change of

variables on the Schwinger parameters converted the integral to a tree amplitude in AdS.

We further gave arguments for the four point function that the resulting tree structure is

again in line with expectations, though a detailed check was not carried out.

In the present paper we will consider a much more general class of operators and their

correlators such as4

G{Ji}(x1, x2, . . . xn) = 〈
n∏

i=1

TrΦJi(xi)〉conn. (1.1)

All possible free wick contractions lead to a large class of diagrams contributing to such

a correlator, even if one restricts to planar graphs. These diagrams have n vertices with

Ji legs coming out of the i’th vertex. We will argue, from the Schwinger parametrised

expressions for such diagrams, that they exhibit a (partial) gluing up into a skeleton

3 See [12][13][14][15][16][17][18][19][20][21]for various investigations of the free/weakly coupled

theory with a view to understanding its stringy dual. Another approach starting from light cone

field theory is that of Thorn and collaborators [22] as well as that of Karch and collaborators

[23]. There is also a lot of literature on the connection between weakly coupled N = 4 Yang-Mills

theory and integrable spin chains, since the work of [24].
4 As in [11] we will be considering a U(N) Euclidean gauge field theory. We will again be

dropping factors which are “inessential”, in all equations.

2



Gluing

Fig. 1: Gluing up of a planar six point function into a skeleton graph.

diagram (with n vertices) which captures the basic connectivity of the original graph.

This is illustrated in Fig.1.

This gluing can be intuitively understood from the electrical analogy since it essentially

involves replacing the various parallel resistors (Schwinger parameters), between a pair of

vertices, with a single effective resistor. Therefore, any particular contribution to the n-

point function (1.1) can be expressed as an integral over a reduced Schwinger parameter

space, namely that of the corresponding skeleton graph. The information about the Ji is

captured through a specific dependence in the integrand.

However, planar graphs with different connectivities give rise to different skeleton

diagrams. All these different skeleton diagram contributions need to be summed over to

obtain the complete answer for (1.1). We will argue that this space of skeleton graphs is in

one-to-one correspondence with the familiar cell decomposition of the moduli space M0,n,

of a sphere with n holes. This basically follows from considering the graphs which are dual

(in the graph theory sense) to the skeleton diagrams.

It is important to stress that this moduli space is distinct from that of the string

diagrams underlying the original field theory Feynman diagrams. As evident from the

contributions to (1.1) shown in Fig.1, these have a large number of loops (the number

depending on Ji). In fact, even the skeleton graphs themselves have (generically) 2(n− 2)

faces. Whereas, the moduli space we are associating with all n-point correlators such as in

(1.1), is that of a sphere with exactly n holes. Moreover, field theory correlators typically

get their contribution from corners of string moduli space whereas here it is the full moduli

3



space M0,n which contributes. Thus this stringy representation of field theory is different

from that studied by Bern, Kosower [25] and others.

In fact, the emergence of the moduli space of a sphere with n holes is natural from the

point of view of the gauge theory/geometry correspondence. The scenario one expects is

that the loops of the original field theory planar diagram get glued up to form a surface and

one has instead n closed string insertions. The n holes that we see here are to be identified

with these closed string insertions. On integrating over the moduli corresponding to the

size of these n-holes, the holes should effectively pinch off giving rise to n external closed

string insertions at punctures. This is indeed the picture that is realised in the topological

string dualities of [1][2][4]. The situation is depicted in figure 2. We will see evidence that

this is realised in our case, both by looking at the three point function in detail, as well as

by studying the form of general stringy correlators in AdS.

Fig. 2: Skeleton graphs → sphere with holes → sphere with punctures (as
the holes go to ∞).

It is mainly for the sake of simplicity that we make our arguments for the n-point

correlators of scalars. The Schwinger parametrisations for other n-point functions in free

field theory is very similar. In particular, the Feynman graphs get glued up, for exactly

the same reasons, into the same skeleton diagrams. And hence replaying the arguments,

we can conclude that other n-point correlators in the free theory can also be written in

terms of an integral over M0,n.

Moreover, the argument is not restricted to planar diagrams alone. One can generalise

to diagrams of arbitrary genus which also get glued into skeleton diagrams. This time one

makes a correspondence with the cell decomposition of the moduli space Mg,n. Thus in

all cases an n-point function leads to a Riemann surface with n holes. This leads us to
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believe that what we are seeing is a signature of the string dual of the free field theory. In

fact, a plus point of this procedure is that it is quite likely generalisable to the interacting

theory as well.

Having written the field theory expression as an integral over parameters which cover

Mg,n, the main task then remains to see that the integrand corresponds to that of the

appropriate string theory on AdS. In fact, it is tempting to speculate that the theory on

Mg,n, that we are seeing here, defines a consistent open string theory on a zero size AdS.

The n-holes give the contributions of boundary states in this open string theory. As in

the picture of tachyon condensation (see e.g. [26][27]) or the topological duality of [4],5

integrating the boundary state over the size modulus of the hole would then give rise to a

description in terms of closed string vertex operators in AdS inserted at the n punctures.

These issues are under investigation. At present, we will just make a few disparate remarks

in support of the above scenario.

Firstly, as we will see in Sec. 4, in the “critical” dimension d = 4, the integrand can

be written in a particularly nice form as far as its dependence on the quantum numbers Ji

and external momenta ki go. This form is at least not obviously inconsistent with string

theory and in fact shares many structural features consistent with it, as we will also see in

Sec. 5.2. An important check is that the integrand is continuous across the boundaries of

the different components in the cell decomposition of the moduli space.

Secondly, the factorisation of field theory correlators following from the spacetime OPE

should translate into a factorisation of the amplitudes in the closed string channel. It is

plausible that the integrand in the Schwinger moduli space should reflect this factorisation

and thus provide one of the consistency checks for it to be a string amplitude.

Finally, we generalise (in Sec. 5) the considerations of [11] for planar three point

functions of bilinears to that for the more general operators TrΦJi . We see in this case

that the the three Schwinger parameters that label M0,3 (corresponding to the sizes of

the three holes) transmute into parameters for the external legs of AdS propagators. This

happens via the same change of variables as in [11]. In a sense, integration over these

moduli effectively puts the insertions at the boundary of AdS. We will also look at the

general form of string correlators of scalars in AdS and argue that they can very naturally

be cast in a form compatible with the field theory expressions obtained in Sec. 4. Therefore,

5 In fact, the authors of [4] speculate on the existence of such an open string theory on AdS,

in analogy with their example.
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together with the emergence of the stringy moduli space this gives confidence that one is

implementing the expected picture of open-closed string duality in this approach.

There are other issues which we do not address directly in this work. For instance,

understanding the role of supersymmetry, if any, will have to await a more detailed study

of the properties of the integrand. In any case, our firm belief in the AdS/CFT conjecture

tells us that, at least in this case, we are assured of the free field theory having a closed

string dual. But, in our arguments here, we do not really use any aspect of N = 4 Super

Yang-Mills. The procedure thus far is quite general. Another related issue is that of the

spacetime dimension. The main conclusion of this paper about the emergence of the moduli

space Mg,n is valid for any dimension d. But the integrand seems to be particularly nice

when d = 4 (as might be expected of field theories). A closer examination of the integrand

should reveal more.

The paper is organised as follows. Section 2 displays the Schwinger parametrisation

of correlators such as (1.1) and exhibits their gluing up into skeleton graphs as in Fig.1.

Section 3 then makes the correspondence of the parameter space of all planar skeleton

diagrams with the moduli space M0,n. It also sketches the generalisations to other corre-

lators as well as to higher genus. Section 4 makes some general remarks on the integrand

in moduli space as given by field theory. Section 5 studies the three point function in some

detail. It also gives some evidence for the relation between the field theory integrand and

the general n-point stringy correlator on AdS. Appendix A gives the details associated

with a change of variables in Sec. 2.

2. Schwinger Moduli and Skeleton Graphs

2.1. A Review of the Parametric Representation

The Schwinger parametric representation of field theory is a well studied subject.

Essentially, one reexpresses the denominator of all propagators in a Feynman diagram via

the identity (appropriate for Euclidean space correlators)

1

p2 + m2
=

∫ ∞

0

dτ exp {−τ(p2 + m2)}. (2.1)

This has the advantage of converting all the momentum integrals into Gaussian integrals

which are then easy to carry out. It is a little intricate to keep track of the details of

the momentum flow. But the final expressions for an arbitrary Feynman diagram can be
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compactly written in graph theoretic terms. For the case of scalar fields, the expressions can

be looked up in field theory textbooks such as [28] (sec.6-2-3). The expressions involving

spinors and gauge fields are more involved. For a recent review containing the general

expressions, see [29][30].

Since we will be mostly looking at massless scalar fields, let us consider the expression

for an arbitrary Feynman diagram contributing to the momentum space version of (1.1).

The result (in d dimensions), of carrying out the integral over the internal momenta is

given in a (deceptively) compact form6

G(k1, k2 . . . kn) =

∫ ∞

0

∏
r dτr

∆(τ)
d
2

exp {−P (τ, k)}. (2.2)

Here the product over r goes over all the internal lines in the graph – there being one

Schwinger parameter for each such line. The measure factor ∆(τ) and the Gaussian expo-

nent P (τ, k) are given by (see for e.g. [28][29])

∆(τ) =
∑
T1

(

l∏
τ). (2.3)

P (τ, k) = ∆(τ)−1
∑
T2

(
l+1∏

τ)(
∑

k)2. (2.4)

Here we are following the notation of [29]: The sum is over various 1-trees and 2-trees

obtained from the original loop diagram. A 1-tree is obtained by cutting l lines of a

diagram with l loops so as to make a connected tree. While a 2-tree is obtained by cutting

l + 1 lines of the loop so as to form two disjoint trees. (2.3) indicates a sum over the set

T1 of all 1-trees, with the product over the l Schwinger parameters of all the cut lines.

The sum over T2 in (2.4) similarly indicates a sum over the set of all two trees, where

the product is over the τ ’s of the l + 1 cut lines. And (
∑

k) is understood to be the sum

over all those external momenta ki which flow into (either) one of the two trees. (Note

that because of overall momentum conservation, it does not matter which set of external

momenta one chooses.)

A simple illustration of these expressions is for the one loop diagram with n insertions.

There are n Schwinger parameters for each of the n arc segments of this loop. Cutting any

of them leads to a 1-tree. Therefore

∆(τ)(l=1) =

n∑
i=1

τi.

6 Here we are suppressing the overall momentum conserving delta function.
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Cutting any two distinct ones leads to two disjoint trees and

P (τ, k)(l=1) = ∆(τ)−1
(l=1)

∑
i<j

τiτj(ki+1 + . . . kj)
2,

where τi is the parameter for the arc joining the i and (i+1)th insertion. These expressions

naturally agree with those obtained from the worldline formalism of Polyakov, Strassler

etc. [31][32][33]. In [11] we used these expressions to study the gluing up for bilinears in

the free theory.

A beautiful feature of parametric representations is the correspondence with electrical

networks, originally discovered in Bjorken’s 1958 thesis (see chapter 18 of [34]). If we

identify the external (as well as internal) momenta with currents flowing in the network

corresponding to the Feynman diagram, then the Schwinger parameters play the role of

resistances. In fact, the Gaussian exponent, before carrying out the momentum integrals,

has the interpretation as the power dissipated in the original circuit (
∑

r I2
r Rr). The

process of carrying out the integrals over internal or loop momenta is then equivalent

to the standard procedure of elimination of internal currents using Kirchoff’s laws. The

resulting Gaussian in the external momenta, given in (2.4), then has the interpretation

as the power dissipated in the equivalent circuit after elimination of the internal loops.

This gives us a nice source of intuition for the process by which loops can get glued into

trees. In [11] we exploited this to understand the gluing of the two, three and four point

functions of bilinears into trees.

As we will now see, the correlators 〈
∏n

i=1 TrΦJi(xi)〉conn will exhibit the gluing much

more completely. In particular, considering these general correlators will allow us to see

all the string moduli, something which was not possible with bilinears alone, for reasons

that will become clear as we proceed.

2.2. Gluing into Skeleton Graphs

In the free theory, the correlators (1.1) are given by a sum over all possible connected

Wick contractions. Let us start by considering the leading large N contribution. They are

given by planar diagrams such as those shown in fig. 1.7 We have as many legs coming out

of the ith vertex as there are free fields inserted there, namely Ji. These planar diagrams

7 In the figure, the maximal number of connections compatible with planarity have been drawn.

Adding a line between two vertices that are not already directly connected will destroy planarity.
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are more easily visualised as spherical diagrams – drawn on a sphere. How do we organise

the sum over all the different possible contributions?

Firstly, for a planar graph with a given connectivity (i.e. the set of pairs of vertices

(ij) which are linked by at least one contraction compatible with planarity), there can be a

multiplicity mr in the number of lines between each pair. In fact, one can convince oneself

that a planar graph, with n vertices, that is maximally connected, has 3(n−2) inequivalent

connections. Where the rth connection comprises of mr lines. mr is only constrained by

the fact that there must be a total of Ji lines entering the ith vertex. These n constraints

imply that there are 2(n − 3) undetermined numbers amongst the mr. For n > 3 there is

thus a lot of mutliplicity for a given connectivity. Secondly, the above multiplicity was for

a fixed connectivity but it is clear that there are several inequivalent ways (for n > 4) to

connect the vertices themselves, consistent with planarity.

What we will show in this section is that the first set of contributions – from the mul-

tiplicity of lines – can all be bunched up in a natural way. For a given connectivity, at first

it might seem that the parametric representation (2.2) implies very different contributions

for graphs with differing mr’s, since we would have to introduce Schwinger parameters for

each internal line. However, we will argue that each of these contributions can be written

in terms of a reduced set of Schwinger parameters τ eff
r where r runs over the edges in

the corresponding skeleton graph. This skeleton graph is what we term the graph that

captures the connectivity of a given Feynman diagram.8 In other words, we replace all

the mr lines in a connection by a single edge. In fig.1 we have illustrated this for our ex-

ample. In other words, all contributions of a given connectivity are expressed in terms of

an integral over parameters defined on the corresponding skeleton graph. The dependence

on the multiplicities mr is captured by the integrand in a fairly simple manner. The nett

8
Caveat: In order that the skeleton graph faithfully capture the colour flow of the original

diagram, we will only glue together adjacent strips of the underlying double line graph. Lines,

between the same pair of vertices, but which cannot be deformed into each other without crossing

a line between a different pair, will not be glued together. Hence the skeleton graph could have

several edges between a given pair of vertices. Each such edge comes with its own multiplicity.

The simplest illustration of such instances is in the four point function where one can have two

contractions along one of the diagonals (on opposite sides of the sphere, so to say), while having

none on the other diagonal. Note that such a graph also has six edges just like the tetrahedron,

where all pairs of vertices are singly connected.
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result is that the skeleton graph and its moduli captures all the contributions of a given

connectivity.

We will argue for this result from the explicit form of the parametrisation in (2.2).

However experts might not need much convincing about the truth of this assertion. (They

are welcome to skip the technicalities and go to Eq.(2.9)). In the Schwinger parameter

representation (2.2), that we are working with, the result can be understood from the

electrical network intuition. In this language, all we are doing is to replace all the parallel

resistors joining vertices (ij) (subject to the caveat in footnote 8) by an effective resistance

given by the usual expression for multiple parallel resistors. In that sense, we are partially

gluing up the original Feynman diagram by bunching up various internal lines.

Let’s now see how this is reflected in the actual expressions. We start with a n-vertex

free field diagram whose connectivity is specified by a skeleton graph having multiplicity

mr for the rth edge. We will label the Schwinger parameters for the internal lines by τrµr

where r indexes the edges of the skeleton graph (r = 1 . . .3(n−2)) and µr their multiplicity

(µr = 1 . . .mr).

Our first claim relates the term ∆(τ) of the original graph to that of the skeleton

graph

∆(τ) =

∏
r,µr

τrµr∏
r τ eff

r

∆̃(τ eff ). (2.5)

Here the effective Schwinger parameter is given by the formula for parallel resistors

1

τ eff
r

=

mr∑
µr=1

1

τrµr

. (2.6)

While ∆̃(τ eff ) is given by the same expression as (2.3) but now the sum over 1-trees is that

of the skeleton graph with the effective parameters τ eff
r for the edges. Our claim follows

from the definition in (2.3). We are instructed to take the product of the parameters on the

cut lines of the original graph. In the rth bunch, we are forced to cut either (mr −1) or all

mr of the lines to get a 1-tree. Any fewer cut lines would leave a loop. If we were to cut all

of them, then we would get a factor of
∏

µr
τrµr

for that bunch and in the skeleton graph

we would have thus cut the corresponding edge. If we were to cut mr − 1 of them, then

we would get a factor (
∏

µr
τrµr

)/τ eff
r corresponding to all the possible ways of cutting

(mr−1) lines in that bunch. In the skeleton graph we would be leaving the rth edge uncut.

Now it is clear, from the relative factor of τ eff
r between the two cases, that on summing

10



over all possible 1-trees of the original graph we will end up with a sum over 1-trees of the

skeleton graph, obtaining the relation in (2.5).

The next claim is that the Gaussian exponent in (2.4) of the original graph can be

expressed entirely in terms of the skeleton graph with parameters τ eff
r .

P (τ, k) = P̃ (τ eff , k), (2.7)

where P̃ (τ eff , k) is given by the same expression as in (2.4), but now for the skeleton

graph with its effective Schwinger parameters for its edges. This follows from similar

considerations as above. The term in (2.4) involving the sum over 2-trees is related by a

factor of (
∏

r,µr
τrµr

)/
∏

r τ eff
r to the corresponding sum over 2-trees of the skeleton graph

with τ eff
r for its edges. The reasoning is completely analogous to that of the previous para.

Putting this together with the relation (2.5) between the factors of ∆ and ∆̃, we see that

the factor of (
∏

r,µr
τrµr

)/
∏

r τ eff
r cancels out and we are left with the relation stated in

(2.7).

Putting both these results together, we have for a diagram of fixed multiplicity and

connectivity, the contribution

∫ ∞

0

∏
r,µr

dτrµr

τ
d
2
rµr

∏
r τ eff

r

d
2

∆̃(τ eff)
d
2

exp {−P̃ (τ eff , k)}. (2.8)

The final step is to convert this into an integral over the τ eff
r . Since the non-trivial

dependence in the integrand is all on the τ eff
r , the dependence on the τrµr

can be factored

out by a change of variables. The details are worked out in Appendix A. The end result is

that the contribution (2.8) to the n point function (1.1) from a graph with fixed connectivity

and multiplicity can be written as

∫ ∞

0

3(n−2)∏
r=1

C(mr)dτr

τ
(mr−1)( d

2−1)
r

1

∆(τ)
d
2

exp {−P (τ, k)}. (2.9)

Here C(mr) is a constant, independent of the τ ’s but depending on mr, obtained from the

change of variables in Appendix A. It is explicitly given by

C(mr) =

∫ 1

0

mr∏
µr=1

dyµr
y

d
2−2
µr δ(1 −

∑
µr

yµr
). (2.10)

Note that in the interesting case of d = 4, C(mr) = 1
(mr−1)! .
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We have also dropped the superscript on the τ ’s as well as the tildes. Hopefully this

will not create any confusion, since from now on only the effective Schwinger parameters

will play a role. Furthermore, all quantities such as ∆(τ) and P (τ, k) will refer to the

skeleton graph.

Therefore we can write the total planar contribution to the momentum space version

of (1.1) in the form

G{Ji}(k1, k2, . . . kn) =
∑

skel.graphs

∞∑
{mr}=1

n∏
i=1

δΣmr(i),Ji

∏
r

C(mr)

×

∫ ∞

0

3(n−2)∏
r=1

dτr

τ
(mr−1)( d

2−1)
r

1

∆(τ)
d
2

exp {−P (τ, k)}.

(2.11)

The sum is over various inequivalent planar skeleton graphs with n vertices. The sum over

multiplicities is constrained by the fact that the net number of legs at the ith vertex is Ji.

(r(i) labels an edge which has the ith vertex as one of its endpoints.)

Thus we see that the planar n-point correlator can be written as an integral over the

space of planar skeleton graphs. By this we mean that (2.11) includes both an integral

over the length of the edges (as parametrised by the τ ’s) of a given skeleton graph, as well

as a sum over the different ways of joining the n-vertices. In the next section we will show

that this space is the same as that of the moduli space of a sphere with n holes. We will

also look at various generalisations.

3. From Skeleton Graphs to String Diagrams

3.1. Skeleton Graphs and the Cell Decomposition of Moduli Space

To see the string theory emerge from the field theory, we need to have the space of

string diagrams arise from the field theory Feynman graphs. By making a correspondence

of the above space of planar skeleton graphs with M0,n (and more generally Mg,n), we

will accomplish precisely that.

The correspondence is made by observing firstly that the space of n-vertex planar

skeleton graphs, which we have been considering, is nothing other than the space of all

triangulations of the sphere with n-vertices. When we say triangulations we mean that the

maximum number of edges, consistent with planarity, namely 3(n− 2), arise when all the

faces of the skeleton graph are triangles. If one of the faces of the discretised sphere were
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not a triangle, we could always add at least one extra edge without destroying planarity.

In other words, the region of parameter space where quadrilaterals and other polygons

appear in the faces are codimension one or higher in the parameter space. More precisely,

quadrilaterals etc. arise only when one or more of the τr go to ∞. That is because the

corresponding edges are effectively removed since the resistance in those edges is going to

∞. In sum, associated uniquely, to every discretisation of the sphere with n vertices is a

planar skeleton graph arising from a Feynman diagram and vice versa.

Now, to each such discretisation of the sphere with n vertices we can uniquely associate

a dual graph in the standard manner.9 Namely, to each edge of the original graph we

associate a dual edge which intersects the original one transversally. We will also associate

a length σr ≡ 1
τr

(”conductance”) to this edge. The length of individual dual edges can

then vary in an unconstrained manner from 0 to ∞ as we vary τr. In this way, every

face of the original graph gives rise to a vertex for the dual and vice versa. The dual

graph is thus constrained to have n faces. And corresponding to the triangular faces are

now trivalent vertices. But the topology remains that of a sphere. Therefore, as we sum

over inequivalent skeleton diagrams, we carry out a sum over the space of dual graphs.10

That is, over all discretisations of the sphere with n faces formed from graphs with cubic

vertices. As mentioned earlier, the lengths σr of the edges of the dual graph vary from 0

to ∞.

This can immediately be recognised as the picture of string interactions in Witten’s

Open String Field Theory [35]. Open string field theory generates string diagrams de-

scribed by strips of fixed width but varying lengths σ, meeting at cubic vertices. In fact,

as shown first by [36] and argued later in full generality by [37], such diagrams of arbitrary

genus, with some number of boundaries as well as punctures, precisely generate a single

cover of the corresponding moduli space of Riemann surfaces with boundaries and punc-

tures. This “cell (or simplicial) decomposition” of the moduli space was also worked out

9 We would like to thank S. Wadia for a helpful remark about the relation between graph

duality and open-closed string duality.
10 The field theory correlators in (1.1) are usually taken to be those of normal ordered operators.

In such a case there are no self contraction diagrams. In the correspondence to dual graphs, self

contractions lead to tadpole subgraphs. Presumably there exists a redefinition on the AdS side

which corresponds to the normal ordering prescription on the field theory side. This would then

take care of the tadpole diagram contributions in the cell decomposition of the moduli space.
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independently by mathematicians [38].11 Thus the sum over inequivalent skeleton graphs

is the sum over different cells in this decomposition of the moduli space.

An important aspect of the cell decomposition is the way different components in this

decomposition of the moduli space connect to each other across boundaries of these cells.12

It can be verified that the mapping to dual graphs preserves this behaviour. For example,

in the case of the four point function, consider an original skeleton graph in the shape of a

tetrahedron with all six legs of non-zero length. One can go to a codimension one boundary

of the cell where the length σ of one of the dual edges goes to zero. This corresponds in the

original graph to removing an edge and getting a quadrilateral face. From this boundary

one can move to a component in which the edge opposite to it (i.e. having no vertex in

common with it) develops a second strand but now traversing the opposite side of the sphere

(see footnote 8). Mapping this onto the dual graphs one exactly gets the matching up of

the different codimension one components of the cell decomposition of M0,4. Similarly

one can go to codimension two boundaries of this codimension one cell and see that they

also patch together smoothly. In all cases graph duality faithfully implements the required

behaviour.

Thus, we can conclude that the space of planar skeleton graphs with n vertices is

isomorphic to the moduli space M0,n of a sphere with n boundaries (faces). Seen in this

light, the lengths of the 3(n−2) = n+2(n−3) edges of the original graph (and thus of the

dual graph) correspond to the number of moduli of a sphere with n holes. In conformal

field theory language one associates n of these to the radii of the holes and 2(n − 3) to

the positions of centres. As described in the introduction and illustrated in fig.2, the

appearance of M0,n is what one might expect from open-closed duality.

Here we should make a remark regarding the Ji that appear in (1.1). For an n point

function, unless the Ji are greater than a minimum value (set by n) the Feynman graph will

not have all the possible contractions. In other words, the corresponding skeleton graph

will not have the maximal number of edges i.e. 3(n − 2). One concludes that such an

amplitude gets its contribution from a lower dimensional component of the cells of M0,n.

In particular, we see that the bilinear operators don’t get contributions from the whole of

11 We would like to thank P. Windey and S. Govindarajan for suggesting early on, a possible

connection between the approach of [11] and the work of Penner [38]. For a nice introduction to

Penner’s work, see the recent article [39].
12 We would like to thank A. Sen for helpful discussions on this point.
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the string moduli space. For example, the Feynman graph for the four point function of

bilinears has only four edges. Thus it gets its support only from a codimension two slice

of M0,4.

3.2. Generalisations

We should also remark that the argument of the present section only relied on the

existence of skeleton graphs. The procedure by which the skeleton graphs themselves arose

from the underlying field theory diagrams also appears to generalise to operators other

than the scalars TrΦJ . The parametric representation for diagrams involving more general

operators only differ in having additional (momentum and spin dependent) polynomial

prefactors multiplying the same Gaussian factor P (τ, k) of (2.4). General expressions for

these prefactors are given in [29][30] (see, in particular, equations (11)-(15) of [29]). When

one takes into account the fermions, gauge fields and global quantum numbers that a theory

like N = 4 Yang-Mills posseses, the explicit expressions for general operators become quite

cumbersome. However, an examination of the general parametric form in [29] reveals that

the gluing arguments of Sec. 2 generalise for such diagrams as well. In fact, this is to

be expected from the correspondence with electrical networks, which holds very generally.

The only difference is that the information about the spins and field content of operators

now modifies the first term in (2.9). Therefore, it appears that general (planar) n-point

correlators in free field theory can also be expressed as integrals over M0,n.

Again, the restriction to planar graphs was also not very essential to the whole ar-

gument. The gluing into skeleton graphs makes no reference to the underlying genus. It

is important, however, that the gluing be carried out compatible with the colour flow as

outlined in footnote 8. Graphs corresponding to higher genus Feynman diagrams are then

glued up into skeleton graphs which are discretisations of Riemann surfaces with more

handles. Similarly, the mapping to dual graphs gives rise to string diagrams that cover the

moduli space Mg,n. As we remarked earlier, the cell decomposition of [36][37][38] holds

for any genus g Riemann surfaces with n holes.

Finally, we should also remark that once we have completely understood the free

field theory (at least in the case of N = 4 Yang-Mills) as a string theory, we can hope

to generalise our approach to the interacting theory. At least, order by order in pertur-

bation theory in the Yang-Mills coupling, the effect of the coupling is through insertions

of additional operators in correlators. Since the parametric representation is applicable

to the corresponding Feynman diagrams of the interacting theory, we can write it again
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in terms of an integral over a string moduli space but now with additional holes for the

coupling constant insertions. It should then be possible to view these additional insertions

as changing, for instance, the radius of the AdS. In this way, this procedure may be useful

in tackling the AdS/CFT conjecture beyond the free limit as well.

It is satisfying that our arguments are not too tied up either with the specifics of the

correlators or that of the planar limit (or even too much with the free limit). It suggests a

universality that behoves the phenomenon of field theory/string theory duality. Also the

fact that the spacetime dimension does not play a crucial role at this level is also not such

a bad thing. It is a feature which we expect will mostly affect the integrand over moduli

space. The integrand holds the key to the real dynamics of the string theory which we see

emerging from the field theory. In the next two sections we will make some preliminary

stabs at the integrand, leaving a detailed study for later.

4. Remarks on the Integrand

The primary result of this paper (specialising to the concrete example of scalars) is

that we can rewrite field theory correlators, schematically, as

G{Ji}(k1, k2, . . . kn) =

∫
Mg,n

[dσ]ρ{Ji}(σ) exp (−
n∑

i,j=1

gij(σ)ki · kj). (4.1)

Here we are denoting the coordinates on the moduli space Mg,n collectively by σ. Recall

that σi = 1
τi

were the natural coordinates in the cell decomposition of Mg,n. ρ{Ji}(σ) is

the momentum independent prefactor which captures the dependence on the Ji. Whereas

gij(σ) in the exponent is independent of the Ji. We can write down ρ{Ji}(σ) and gij(σ) in

each cell of the moduli space from the expressions at the end of Sec. 2.

Thus, for instance in the interesting case of d = 4, in a particular cell labelled by a

given skeleton graph, we can rewrite the contribution in (2.11) in several equivalent ways

G
{Ji}
cell =

∞∑
{mr}=1

n∏
i=1

δΣmr(i),Ji

∫ ∞

0

∏
r

dσrσ
mr−1
r

(mr − 1)!

1

∆̂(σ)2
exp {−P̂ (σ, k)}

=

∞∑
{mr}=1

∫ ∞

0

∏
r

dσrσ
mr−1
r

(mr − 1)!

∫ 2π

0

n∏
i=1

dθie
iθi(Σmr(i)−Ji)

1

∆̂(σ)2
exp {−P̂ (σ, k)}

=

∫ ∞

0

∏
r

dσr

exp {−P̂ (σ, k)}

∆̂(σ)2

∫ 2π

0

n∏
i=1

dθi exp (
∑
r(ij)

σr(ij)e
i(θi+θj))e−i

∑
n

i=1
θi(Ji−Ni).

(4.2)
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To obtain the first line we have changed variables in (2.11) to σr = 1
τr

and rexpressed both

∆(τ) and P (τ, k) in terms of the σ’s. In the process, we have defined

∆̂(σ) ≡
∑
T1

(
∏

σ) = (
∏
r

σr)∆(τ = 1/σ). (4.3)

and

P̂ (σ, k) ≡
1

∆̂(σ)

∑
T2

(
∏

σ)(
∑

k)2 = P (τ = 1/σ, k). (4.4)

The sum, as before, is over the 1-trees and 2-trees of the skeleton graph but the product

in both these definitions is over the lines that are not cut.

In the second line of (4.2) we introduced a lagrange multiplier for the constraints on the

multiplicities. This enables us to carry out the sum over multiplicities in an unconstrained

way and obtain the third line. Here r(ij) is an edge that joins vertices i and j; and Ni is

the number of legs joining at the ith vertex of the skeleton graph. In this last line the cell

contribution is clearly in the form (4.1). From (4.2) it is also not difficult to verify that the

integrand is continuous across boundaries of the cells (where at least one of the σ → 0).

This is crucial if one wants to interpret the integrand as that of a string theory.

We also notice that the schematic form (4.1) is similar in structure to the expressions

for string amplitudes that one is familiar with, such as in flat space. Namely, a prefactor

contains the information about the masses/dimensions (and more generally spins). While

the Gaussian factor is independent of these details and captures the (worldsheet) correla-

tors of the vertex operators eik·X(ξ). We will see in the next section that one can plausibly

argue that this is also the structure one would expect from stringy correlation functions

in AdS.

An important feature of string amplitudes is its factorisability in different channels.

This holds at the level of the integrand on moduli space, since it is a consequence of the

worldsheet OPE and its associativity. Now, in the AdS/CFT conjecture, the factorisabil-

ity of AdS amplitudes is reflected in the spacetime OPE relations for the corresponding

correlation functions. Associativity of the OPE means that we can factorise it in differ-

ent channels yielding the same answer. We believe that the above Schwinger parametric

representation should reflect the spacetime OPE of the field theory and hence translate

into a factorisability of the integrand in the closed string channel. It should be very much

possible to make this statement precise.

Ultimately, one wants to also demonstrate that the integrand is specifically that of

an appropriate string theory on AdS. We expect that the details of the string theory will
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depend on the matter content of the field theory. However, any string theory that is dual

to a free (and thus conformal) gauge theory should have a background which contains at

least an AdS part.

In [11] we pointed out that the appearance of AdSd+1 from a free theory in d di-

mensions could naturally take place in the Schwinger representation that we have been

employing. Essentially, propagators in AdSd+1 can be parametrically expressed in terms

of d dimensional proper time propagators for free fields. We used this fact, together with

the geometric gluing into trees, to argue that the two and three point functions of bilinears

can be rewritten as tree amplitudes on AdS. This was accomplished by a simple change

of variables on the Schwinger parameter space.

In Sec. 5 we generalise this to the planar three point function of TrΦJi . What will

be clear from the details of that calculation is that (as in [11]) the three Schwinger moduli

transmute into parameters for the propagators on the external legs of the AdS amplitude.

Integrating over these parameters is integrating over the size of the holes of M0,3. It

effectively gives rise to punctures in that one gets bulk to boundary AdS propagators as

a result. This is in line with the intuition, mentioned in the introduction, of holes closing

up as one integrates over their size modulus. Together with the appearance of the string

moduli space, this gives confidence that we are indeed seeing the AdS emerge from the

field theory.

From the form of correlators in AdS (discussed in Sec.5) we expect this to continue

to happen for the n point function. Namely, one can isolate n size moduli out of the 6g +

3(n−2) moduli. And these will simply parametrise the n external legs of the corresponding

AdS amplitude. The rest of the integral over the moduli space would then give a closed

string n-point amplitude on AdS.

5. The Three Point Function and AdS Correlators

5.1. From Delta to Star

We will consider the n = 3 case of (1.1) (in the planar sector)

G{Ji}(k1, k2, k3) = 〈TrΦJ1(k1)TrΦJ2(k2)TrΦJ3(k3)〉conn. (5.1)

The analysis is a generalisation of that in [11] but will be done in a somewhat different

way to make things clearer.13

13 See [40][41][42][43]etc. for studies of three point functions of such scalars (chiral primary

operators in the N = 4 theory) in the context of AdS/CFT .
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The first thing to note, in this case, is that the number of legs mr in the rth edge are

determined completely by the Ji. In fact, we have three equations (from the three vertices)

m12 + m13 = J1 (5.2)

and cyclic permutations of it. Here we are labelling the edges r by the pair of vertices they

connect. The equations (5.2) determine the mij to be

m12 =
1

2

3∑
i=1

Jk − J3 (5.3)

and cyclic permutations. Thus there is a unique graph contributing to (5.1) with a fixed

number of legs between each pair of vertices. We do not have to carry out any sum over

multiplicities.

Now, by the arguments of Sec. 2, this graph can be glued up into a skeleton graph,

which is just a triangle in this case. And the expression for the amplitude in terms of the

effective Schwinger parameters is given by (2.9). (Since the skeleton graph is unique, upto

reflection, this is the same as (2.11).) Actually, as in (4.2), we will work with the natural

conductance variables σr = 1
τr

and rewrite (2.9), using (4.3),(4.4) as

G{Ji}(k1, k2, k3) =

∫ ∞

0

3∏
r=1

dσrσ
(mr−1)( d

2−1)+ d
2−2

r
1

∆̂(σ)
d
2

exp {−P̂ (σ, k)}. (5.4)

Here we have relabelled the edges so that σ1 ≡ σ23 etc. and dropped the overall factors of

C(mr). Also using the expressions (4.3) and (4.4) we have

∆̂(σ) = σ1σ2 + σ2σ3 + σ3σ1 (5.5)

and

P̂ (σ, k) =
1

∆̂(σ)
[σ1k

2
1 + σ2k

2
2 + σ3k

2
3 ]. (5.6)

We will now re-express this in terms of new moduli, more appropriate for the tree

1

ρi

=
σi

∆̂(σ)
⇒ σi =

ρ1ρ2ρ3

(
∑

k ρk)ρi

. (5.7)

This change of variables is motivated by the star-delta transformation of electrical net-

works. Namely, if σi are the conductances of a delta or triangle network, such as the one

we have, then ρi are the conductances of the equivalent three pronged tree or star network
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(see [44] for example). It can be checked that the jacobian for this transformation is given

by

det(
∂σi

∂ρj

) =
ρ1ρ2ρ3

(
∑

k ρk)3
. (5.8)

We also see that

∆̂(σ) =
ρ1ρ2ρ3

(
∑

k ρk)
; P̂ (σ, k) =

3∑
i=1

k2
i

ρi

. (5.9)

We can now rewrite the integral in (5.4), after gathering together various terms,

G{Ji}(k1, k2, k3) =

∫ ∞

0

3∏
i=1

dρiρ
(Σkmk−mi)(

d
2−1)− d

2−1
i

1

(
∑

k ρk)Σkmk( d
2−1)− d

2

× e
−[

∑
3

i=1

k2
i

ρi
]

=

∫ ∞

0

3∏
i=1

dρiρ
∆i−

d
2−1

i

1

(
∑

k ρk)Σk
∆k
2 − d

2

× e
−[

∑
3

i=1

k2
i

ρi
]
.

(5.10)

In the second line we have used (5.2),(5.3)as well as the the fact that the operators TrΦJi

have canonical dimensions ∆i = Ji(
d
2
− 1) in the free theory.

This last line is close to what one might expect from a string theory on AdS, as we

will shortly see. In any case, it is a short step now to write (5.10) in terms of the expected

bulk-to-boundary propagators in AdS.

G{Ji}(k1, k2, k3) =

∫ ∞

0

dt

t
d
2 +1

∫ ∞

0

3∏
i=1

dρiρ
∆i−

d
2−1

i t
∆i
2 e−tρie

−
k2

i
ρi . (5.11)

Here we have used the identity

1

as
=

1

Γ(s)

∫ ∞

0

dtts−1e−at. (5.12)

to rewrite the denominator term in (5.10).

Either in this form or after a Fourier transform to position space we can recognise

this to be the product of three bulk to boundary propagators in AdSd+1 for the appro-

priate scalar fields. Thus, for instance in position space, (taking into account the overall

momentum conserving delta function), we can write (5.11) as

G{Ji}(x1, x2, x3) =

∫ ∞

0

dt

t
d
2 +1

∫
ddz

∫ ∞

0

3∏
i=1

dρiρ
∆i−1
i t

∆i
2 e−ρi(t+(xi−z)2)

=

∫ ∞

0

dt

t
d
2 +1

∫
ddz

3∏
i=1

K∆i
(xi, z; t),

(5.13)
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where

K∆(x, z; t) =
t

∆
2

[t + (x − z)2]∆
(5.14)

is the usual position space bulk to boundary propagator for a scalar field corresponding to

an operator of dimension ∆. The only slight difference is that we have parametrised the

AdS radial coordinate by z2
0 = t as in [11].

What we have thus seen here is that the integral over the moduli space M0,3, which

the parametric representation of field theory provided us, is really an integral over AdS.

The original Schwinger parameters σi can be traded for the ρi which parametrise the

propagators for the external legs of the AdS correlator. Integrating over the ρi, which

correspond to the size of the holes, propagates the AdS scalar field all the way from

infinity (the boundary). This very much corresponds to the picture in the introduction

of the holes being replaced by punctures. We will see below how this is likely to be more

general than to the three point function.

5.2. Vertex Operators in AdS

We can also understand how (5.4) or equivalently (5.10) could arise from a vertex

operator calculation in AdS. Though we don’t have a good handle yet on the string

theory, we can guess that the n-point correlators are given in terms of vertex operator

computations in the worldsheet theory for AdS. Thus for scalars we would guess, following

[15][45]

G{Ji}(x1 . . . xn) =〈
n∏

i=1

K∆i
(xi, X(ξi); t(ξi))〉WS

=〈
n∏

i=1

t(ξi)
∆i
2

[t(ξi) + (xi − X(ξi))2]∆i
〉WS.

(5.15)

Here X(ξ), t(ξ) denote worldsheet fields for the AdS target space. The averaging, as

the subscript indicates, is over the worldsheet action for these and other fields (including

ghosts). An integral over the moduli space of the Riemann surface with n punctures is

also implicit. We can write (5.15) in the parametric form

G{Ji}(x1 . . . xn) =

∫ ∞

0

n∏
i=1

dρiρ
∆i−1
i 〈t(ξi)

∆i
2 e−t(ξi)ρi−ρi(xi−X(ξi))

2

〉WS. (5.16)
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To make a connection with the field theory expressions we go to momentum space where

(5.16) becomes

G{Ji}(k1 . . . kn) =

∫ ∞

0

n∏
i=1

dρiρ
∆i−

d
2−1

i e
−

k2
i

ρi 〈t(ξi)
∆i
2 e−t(ξi)ρieiki·X(ξi)〉WS. (5.17)

We believe (5.17) is the right starting point for a comparison of the (scalar) n-point

function in AdS with the field theory expressions (2.11) etc.. But we can already see

over here many of the features that we expect. There are n parameters ρi which can be

identified with the size moduli of holes as we argued at the end of the last subsection.

Then there are the usual (6g + 2n − 6) moduli for the n point function. As in the case

of the three point function we need to find the appropriate change of variables to go from

these parameters to the (6g + 3n− 6) σi of the field theory. But it is clear that (5.17) fits

in with the general schematic form of (4.1).

In the particular case of the three point function that we studied above, since (5.17)

should be independent of the ξi (i = 1 . . .3) from conformal invariance, it is plausible

that only the zero mode of the fields t(ξ), X(ξ) effectively contribute in the worldsheet

path integral (after including the contribution of appropriate ghost insertions). The zero

mode for t gives the corresponding integral in (5.11) and that for X just gives the overall

momentum conserving delta function. Thus it is not surprising from this point of view

that we could relate the field theory three point function to the point particle amplitude

(5.13) – only the zero modes contribute. It also suggests that we will really see the stringy

structure in the four and higher point functions.

Going by the arguments presented in this paper, the field theory expressions such as

(2.11) or (4.2) are just (5.17) written in different variables. So we can use this to turn

things around and write down the AdS correlators from the field theory (certainly in the

case of N = 4 Super Yang-Mills theory). We would then have reconstructed the string

theory on AdS via all its correlators.

Anyhow, the task now is obviously to make various of these surmises precise and in

the process learn about the worldsheet theory for AdS. In some sense we are in a situation

very similar to that in the early days of dual theory when people reconstructed the string

picture from the form of the Veneziano-Koba-Nielsen and Virasoro-Shapiro amplitudes.
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Appendix A. A Change of Variables

Here we will see how to effect the change of variables of integration from the τrµr
in

(2.8) to the effective Schwinger parameters τr in (2.9). Firstly, the relation between τr and

τrµr
is given by (2.6). This can be implemented by inserting into the integral (2.8) the

identity ∫ ∞

0

dτr

τ2
r

δ(
1

τr

−
mr∑

µr=1

1

τrµr

) = 1. (A.1)

The nontrivial dependence on τrµr
in (2.8) comes from the term in the first bracket. So

using the above identity we can write such a contribution as

∫ ∞

0

dτr

τ2
r

∫ ∞

0

∏
µr

dτrµr

τ
d
2

rµr

δ(
1

τr

−
mr∑

µr=1

1

τrµr

). (A.2)

Now define xrµr
=

τrµr

τr
and change variables from τrµr

to xrµr
. Then (A.2) reads as

∫ ∞

0

dτr

τ
mr( d

2−1)+2
r

∫ ∞

1

∏
µr

dxrµr

x
d
2
rµr

δ[
1

τr

(1 −
mr∑

µr=1

1

xrµr

)]

=

∫ ∞

0

dτr

τ
mr( d

2−1)+1
r

∫ ∞

1

∏
µr

dxrµr

x
d
2
rµr

δ(1 −
mr∑

µr=1

1

xrµr

).

(A.3)

Thus we have factored the integral over τrµr
into an integral over τr times a factor C(mr)

which depends only on mr, where

C(mr) =

∫ ∞

1

∏
µr

dxrµr

x
d
2
rµr

δ(1 −
mr∑

µr=1

1

xrµr

)

=

∫ 1

0

mr∏
µr=1

dyrµr
y

d
2−2
rµr δ(1 −

mr∑
µr=1

yrµr
).

(A.4)

In the second line we have made the substitution yrµr
= 1

xrµr
. In this form we can do the

integral explicitly for general d. But the case of d = 4 is particularly simple. The delta

function over one of the yrµr
can be carried out and we are left with an integral over the
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(mr − 1) others in over the region where their sum is less than one. This is just 1
(mr−1)! .

In general dimensions the answer is 14

C(mr) =
Γ(d

2 − 1)mr

Γ(mr(
d
2
− 1))

. (A.5)

14 We would like to thank E. Schreiber for providing us with this expression.
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