618 research outputs found

    A two-sided analogue of the Coxeter complex

    Get PDF
    For any Coxeter system (W,S)(W,S) of rank nn, we introduce an abstract boolean complex (simplicial poset) of dimension 2n−12n-1 that contains the Coxeter complex as a relative subcomplex. Faces are indexed by triples (I,w,J)(I,w,J), where II and JJ are subsets of the set SS of simple generators, and ww is a minimal length representative for the parabolic double coset WIwWJW_I w W_J. There is exactly one maximal face for each element of the group WW. The complex is shellable and thin, which implies the complex is a sphere for the finite Coxeter groups. In this case, a natural refinement of the hh-polynomial is given by the "two-sided" WW-Eulerian polynomial, i.e., the generating function for the joint distribution of left and right descents in WW.Comment: 26 pages, several large tables and figure

    On the number of matrices and a random matrix with prescribed row and column sums and 0-1 entries

    Get PDF
    We consider the set Sigma(R,C) of all mxn matrices having 0-1 entries and prescribed row sums R=(r_1, ..., r_m) and column sums C=(c_1, ..., c_n). We prove an asymptotic estimate for the cardinality |Sigma(R, C)| via the solution to a convex optimization problem. We show that if Sigma(R, C) is sufficiently large, then a random matrix D in Sigma(R, C) sampled from the uniform probability measure in Sigma(R,C) with high probability is close to a particular matrix Z=Z(R,C) that maximizes the sum of entropies of entries among all matrices with row sums R, column sums C and entries between 0 and 1. Similar results are obtained for 0-1 matrices with prescribed row and column sums and assigned zeros in some positions.Comment: 26 pages, proofs simplified, results strengthene

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure
    • …
    corecore