12,382 research outputs found

    A general approach to transforming finite elements

    Get PDF
    The use of a reference element on which a finite element basis is constructed once and mapped to each cell in a mesh greatly expedites the structure and efficiency of finite element codes. However, many famous finite elements such as Hermite, Morley, Argyris, and Bell, do not possess the kind of equivalence needed to work with a reference element in the standard way. This paper gives a generalizated approach to mapping bases for such finite elements by means of studying relationships between the finite element nodes under push-forward.Comment: 28 page

    Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 2

    Get PDF
    Two families of parametrized mixed variational principles for linear electromagnetodynamics are constructed. The first family is applicable when the current density distribution is known a priori. Its six independent fields are magnetic intensity and flux density, magnetic potential, electric intensity and flux density and electric potential. Through appropriate specialization of parameters the first principle reduces to more conventional principles proposed in the literature. The second family is appropriate when the current density distribution and a conjugate Lagrange multiplier field are adjoined, giving a total of eight independently varied fields. In this case it is shown that a conventional variational principle exists only in the time-independent (static) case. Several static functionals with reduced number of varied fields are presented. The application of one of these principles to construct finite elements with current prediction capabilities is illustrated with a numerical example

    On Some Integrated Approaches to Inference

    Full text link
    We present arguments for the formulation of unified approach to different standard continuous inference methods from partial information. It is claimed that an explicit partition of information into a priori (prior knowledge) and a posteriori information (data) is an important way of standardizing inference approaches so that they can be compared on a normative scale, and so that notions of optimal algorithms become farther-reaching. The inference methods considered include neural network approaches, information-based complexity, and Monte Carlo, spline, and regularization methods. The model is an extension of currently used continuous complexity models, with a class of algorithms in the form of optimization methods, in which an optimization functional (involving the data) is minimized. This extends the family of current approaches in continuous complexity theory, which include the use of interpolatory algorithms in worst and average case settings
    • …
    corecore