249 research outputs found

    A Developmental Neuro-Robotics Approach for Boosting the Recognition of Handwritten Digits

    Get PDF
    Developmental psychology and neuroimaging research identified a close link between numbers and fingers, which can boost the initial number knowledge in children. Recent evidence shows that a simulation of the children's embodied strategies can improve the machine intelligence too. This article explores the application of embodied strategies to convolutional neural network models in the context of developmental neurorobotics, where the training information is likely to be gradually acquired while operating rather than being abundant and fully available as the classical machine learning scenarios. The experimental analyses show that the proprioceptive information from the robot fingers can improve network accuracy in the recognition of handwritten Arabic digits when training examples and epochs are few. This result is comparable to brain imaging and longitudinal studies with young children. In conclusion, these findings also support the relevance of the embodiment in the case of artificial agents’ training and show a possible way for the humanization of the learning process, where the robotic body can express the internal processes of artificial intelligence making it more understandable for humans

    Loss of Plasticity in Deep Continual Learning

    Full text link
    Modern deep-learning systems are specialized to problem settings in which training occurs once and then never again, as opposed to continual-learning settings in which training occurs continually. If deep-learning systems are applied in a continual learning setting, then it is well known that they may fail to remember earlier examples. More fundamental, but less well known, is that they may also lose their ability to learn on new examples, a phenomenon called loss of plasticity. We provide direct demonstrations of loss of plasticity using the MNIST and ImageNet datasets repurposed for continual learning as sequences of tasks. In ImageNet, binary classification performance dropped from 89\% accuracy on an early task down to 77\%, about the level of a linear network, on the 2000th task. Loss of plasticity occurred with a wide range of deep network architectures, optimizers, activation functions, batch normalization, dropout, but was substantially eased by L2L^2-regularization, particularly when combined with weight perturbation. Further, we introduce a new algorithm -- continual backpropagation -- which slightly modifies conventional backpropagation to reinitialize a small fraction of less-used units after each example and appears to maintain plasticity indefinitely

    Smart Augmentation - Learning an Optimal Data Augmentation Strategy

    Get PDF
    A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks(DNN). There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method which we call Smart Augmentation and we show how to use it to increase the accuracy and reduce overfitting on a target network. Smart Augmentation works by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart Augmentation has shown the potential to increase accuracy by demonstrably significant measures on all datasets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases
    • …
    corecore