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Abstract— Developmental psychology and neuroimaging 

research identified a close link between numbers and fingers, 

which can boost the initial number knowledge in children. Recent 

evidence shows that a simulation of the children's embodied 

strategies can improve the machine intelligence too. This article 

explores the application of embodied strategies to convolutional 

neural network models in the context of developmental neuro-

robotics, where the training information is likely to be gradually 

acquired while operating rather than being abundant and fully 

available as the classical machine learning scenarios. The 

experimental analyses show that the proprioceptive information 

from the robot fingers can improve network accuracy in the 

recognition of handwritten Arabic digits when training examples 

and epochs are few. This result is comparable to brain imaging 

and longitudinal studies with young children. In conclusion, these 

findings also support the relevance of the embodiment in the case 

of artificial agents’ training and show a possible way for the 

humanization of the learning process, where the robotic body can 

express the internal processes of artificial intelligence making it 

more understandable for humans. 

Keywords—  Neurorobotics; Cognitive Science; Computer 

Vision and Pattern Recognition; Machine Intelligence; Number 

Cognition. 

I. INTRODUCTION 

The embodied cognition theory affirms that human 
cognitive skills can be extended through bodily experiences, 
such as manipulatives, gestures, and movements [1]–[3]. 
Number processing is particularly valuable because it can 
provide a window into the neuronal mechanisms of high-level 
brain functions [4]. Numbers constitute the building blocks of 
mathematics, a language of the human mind that can express 
the fundamental workings of the physical world and make the 
universe intelligible [5]. Therefore, understanding how the 
artificial sensorimotor system embodies numerical processes 
can also help to answer the wider question of how bodily (real 
or artificial) systems support and scaffold the development of 
abstract cognitive skills [6]. Within the embodied mathematics 
framework, fingers are spontaneous tools that play a crucial 
role in developing number cognition until a level of basic 
arithmetic is achieved, for details see recent reviews [7], [8]. 

Embracing this theory, Developmental Neuro-Robotics 
aims at designing “robots whose control has been modelled 
after some aspect of the brain. Since the brain is so closely 
coupled to the body and situated in the environment, 
Neurorobots can be a powerful tool for studying neural 
function in a holistic fashion.” [9], [10] The application of 
embodied theory in artificial agents is among the motivations 

for designing new robotic platforms for research to resemble 
the shape of a human body, known as “humanoids”, e.g. 
ASIMO [11], and in particular that of a child, notably iCub 
[12] and NAO [13]. One of the postulates of this approach is 
that the humanization of the learning process can help to make 
artificial intelligence more understandable for humans and may 
increase the acceptance of robots in social environments [14]. 
Neurorobotics is still making its first steps, but it has already 
been successfully applied in the modelling of embodied word 
learning as well as in the development of perceptual, social, 
language and numerical cognition [15], [16], and recently 
extended as far as the simulation of embodied motor and 
spatial imagery [17]–[19]. The neurorobotics approach has also 
been used to simulate neuropsychological disorders and test 
possible rehabilitation procedures [20]. 

A recent study by Di Nuovo and McClelland [21] 
confirmed an increased efficiency in the recognition of spoken 
digits by using the sensory-motor information from an artificial 
humanoid body, i.e. the child-robot iCub, which is one of the 
few platforms that has fully functional five-fingered hands 
[22]. The results of the simulated training shown several 
similarities with studies in developmental psychology, such as 
a quicker creation of a uniform number line. 

In this article, we further progress the development of 
symbolic numerical reasoning in humanoid robots by 
modelling the recognition of handwritten Arabic digits. Our 
approach mimics the developmental plasticity of the human 
brain, where new abilities are built upon the previous ones. 
Indeed, we first re-enact the previous training by training a 
single layer to associate fixed finger representations, i.e. motor 
positions to open/close the robot's fingers, to the number 
classes from 0 to 9. Then, the pre-trained layer is integrated 
into a convolutional classifier with new layers to perform the 
recognition of the handwritten digits by building upon the 
previously learned association. This between the Arabic digits 
and finger activations was observed in neuroscientific studies, 
e.g. [23].  

The objective is to demonstrate a higher efficiency of 
machine learning by mimicking how children behave while 
developing numerical cognition. Meanwhile, we also aim at 
validating an approach for the humanization of artificial 
training strategies that can make machine learning more 
understandable for humans. This will help to reduce the 
scepticism against the deep learning approaches which are 
currently considered black boxes. For instance, human teachers 
may simply open and close the robot's fingers to instruct the 
robot or correct the representation in case of error. 
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Furthermore, we aim at providing useful insights on 
biologically inspired strategies that can improve machine 
learning performance in the context of applied robotics, where 
the training information is likely to be gradually acquired while 
operating rather than being abundant and immediately 
available as in the majority of machine learning scenarios. 

II. RELATED WORK 

The simulation of embodied mathematical learning in 
artificial learning agents was usually focused on testing 
developmental psychology and neuroscientific theories [24]. 
For example, inspired by the earlier work by Alibali and Di 
Russo[25], Ruciński et al. [26] presented a model in which 
pointing gestures significantly improve the counting accuracy 
of the humanoid robot iCub. Recently, Pecyna et al. [27] 
presented neuro-robotics models with a deep artificial neural 
network capable of number estimation via finger counting. The 
experimental studies showed an improvement in training speed 
of number estimation when the network is also producing 
finger counting in parallel with the estimated number. Di 
Nuovo et al. [28]–[30] investigated artificial models for 
learning digit recognition (visual) and number words (auditory) 
with finger counting (motor), to explore whether finger 
counting and its association with number words or digits could 
serve to bootstrap number cognition. Results of the various 
robotic experiments show that learning number word 
sequences together with finger sequencing speeds up the 
building of the neural network's internal representations 
resulting in qualitatively better patterns of the similarity 
between numbers. The internal representations of finger 
configurations can represent the ideal basis for the building of 
an embodied number representation in the robot, something in 
line with embodied and grounded cognition approaches to the 
study of mathematical cognitive processes. Similarly to young 
children, the use of finger counting and verbal counting 
strategies, the developmental neuro-robotic model develops 
internal representations that subsequently sustain the robot’s 
learning of the basic arithmetic operation of addition [28]. 
Successively, Di Nuovo et al. [31] presented a deep learning 
approach with superior learning efficiency. The new model 
was validated in a simulation of the embodied learning 
behaviour of bi-cultural children, using different finger 
counting habits to support their number learning. Recently, Di 
Nuovo [32] presented a new “shallow” embodied model for 
number cognition, which incorporates a neural link observed in 
neuroscientific studies [23], providing preliminary information 
on the effectiveness of the embodied approach in the 
recognition of synthetic handwritten digits. The results show 
how the robot fingers are an embodied representation of the 
numerosity magnitude that is the ideal computational 
representation for artificial mathematical abilities [33]. Moving 
further to arithmetic, Di Nuovo [34] investigates a Long Short-
Term Memory (LSTM) architecture for modelling the addition 
operation of handwritten digits using an embodied approach. 
The results confirm an improved accuracy in performing the 
simultaneous recognition and addition of the digits, also 
showing an odd number of split-five errors in line with what 
has been observed in studies with humans [35]. 

All these studies demonstrated the value of the 
developmental neurorobotics approach to simulate aspects of 

numerical cognition in artificial cognitive systems. However, at 
the best of our knowledge, the study presented in [21] is the 
only one that demonstrated the effectiveness of the approach in 
a real task, i.e. recognizing the digits of the Google Tensorflow 
Speech commands dataset, while maintaining a plausible 
setting in the context of early cognitive development [21].  

In this article, we present a further step in the 
developmental of numerical cognition in robots, i.e. the 
recognition of written number symbols. This will also allow 
demonstrating the potential applicability of the developmental 
neurorobotics approach to a popular machine learning 
benchmark database: the MNIST database of handwritten 
digits [36]. 

III. MATERIALS AND METHODS 

A. The MNIST Database of Handwritten Digits 

To provide a numerical challenge to our models, we used a 

very popular and publicly available benchmark in machine 

vision: the MNIST database of handwritten digits [37]. The 

database contains a total of 70,000 images, sized 28-by-28 

(784 pixels), of handwritten digits divided into a training set 

of 60,000 examples, and a test set of 10,000 examples. This 

benchmark database is best suited for testing models on real-

world data whilst spending minimal effort for pre-processing 

and formatting. Pixel values are normalized in the [0,1] range. 

B. Simulated embodied representations 

Pictures of the iCub finger representations are in Figure 1, 

which shows the right hand. The iCub provides motor 

proprioception (joint angles) of the fingers’ motors, for a total 

of 7 degrees of freedom (DoF) for each hand as follows: 2 

DoF for the thumb, index, and middle fingers, and one for 

controlling both ring and pinky fingers, which are "glued 

together". Note that the hardware limitation is also common in 

human beings, who often can't freely move these two fingers 

independently [38], indeed the finger configurations of each 

hand are replicating the American Sign Language number 

representation from 1 to 5. Representations with the left hand 

are specular, and they are used in addition to the fully open 

right hand to represent numbers from 6 (5+1) to 9 (5+4). 

 
Fig. 1. The number representations with the iCub right-hand fingers. From 

one, two, three, four and five. Numbers from six to nine are represented with 

two hands, with the right hand fully open. In practice, the embodied inputs are 

the joint angles from the fingers’ motor encoders. 

The iCub robot encoder values for the finger representations 

indicate the number magnitude by the number of open fingers, 

though the numbers 3 and 4, as well as 8 and 9, involve only 

partially overlapping sets of fingers. To overcome the possible 

distortion by unbalanced representations because of the 

physical limitation, we duplicated the contribution of the 

motors that control the last two fingers; therefore, we have 16 

inputs for the motor module. Encoder values are normalized in 



the [0,1] range. The actual numerical values of the iCub 

fingers representations can be found in [30] and in the GitHub 

repository (link is at the end of the article). 

C. Embodied Deep Learning architecture for 

recognising handwritten Arabic digit images 

The artificial neural network architecture is based on a 

classical Convolutional Neural Network (CNN) classifier, the 

LeNet-5, which was proposed by LeCun et al. [39] for 

classifying handwritten digit images. This is a relatively simple 

but effective deep architecture that includes several layers that 

characterize the success of this approach: a sequence of 2 two-

dimensional convolutional layers, each followed by Average 

Pooling layers, two densely connected ReLU layers and, 

finally, an output layer named “Classification_Layer” with a 

Softmax transfer function. Dropout and batch normalisation 

layers are inserted after each hidden layer to reduce overfitting 

and improve generalization performance. 

A third model is also considered in our experiments. This 
was inspired by the Google Inception, which includes 
"auxiliary" classifiers to prevent the middle part of the network 
from "dying out" because of the limitations of propagating the 
error through the many layers of deep CNN [40]. The 
inception-like model doesn’t include a pre-training. 

The three models considered in our experimental 
comparisons are schematised in Figure 2. 

 

Fig. 2. The three models compared in our experiments: (a) the baseline, i.e. 
LeNet-5; (b) the Inception-like with the auxiliary softmax classifier; (c) the 

embodied model with the auxiliary output that is trained to predict robot’s 

fingers configurations. Predicted fingers configurations are used to augment 
the final output layer (softmax). The weights of the link (in red) between the 

auxiliary layer (sigmoid) and the final output are pre-trained to simulate the 

previous learning [21]. 

The details of the general architecture with all the layers 
considered is summarised in Table I. The rows report the type, 
the size of the output, input and output links, the number of 
trainable parameters, the arguments and the initialization 
function for each layer. The baseline model (LeNet-5) includes 
all the layers, except the 15 (the auxiliary output - “Aux Out”), 
which is part of the Embodied model and the Inception-like. 
The pre-trained layer in the Embodied model is the final 
Softmax classifier (22). Out1 is the number class (one-hot 
representation), Out2 is the Robot hand encoders (fingers). The 

inception-like model the embodied layer (15) is not linked to 
the classifier (22) and he Out2 is the same one-hot 
representation of the number class. 

The embodied model is realized by including an additional 

densely connected layer, the Auxiliary Output (n.15), which is 

connected and receives the input from the last Average Pooling 

layer. The embodied model is trained with a two-stage 

approach that simulated the developmental stages of learning: 

first, the final layer (n.22) is trained to associate embodied 

inputs to the number classes. Then, the remaining layers are 

connected, and the full model is tuned to classify the 

handwritten digits. Operatively, the auxiliary output layer n. 15 

is inserted in the baseline model and it is fully connected to the 

output layer 22. The weights of this connection are those pre-

trained in the first stage, therefore it simulates the neural link 

observed in neuroscientific studies [23]. 

TABLE I. A SUMMARY OF THE GENERAL CNN ARCHITECTURE. 

Layer Type 
Output 
Shape 

In Out 
N. 

Param 
Arguments 

1 Inputs 28x28 Digits 2 
 

Range=[0,1] 

2 Conv2D 28x28 1 3 60 filters=6,  
size=3x3;  

3 Avg 
Pooling 

14x14 2 4 
 

size=3x3;  
stride=2x2 

4 BatchNorm 14x14 3 5 24 
 

5 Dropout 14x14 4 6   prob=0.2 

6 Conv2D 14x14 5 7 880 filters=16,  
size=3x3;  

7 Avg 
Pooling 

7x7 6 8 
 

size=3x3;  
stride=2x2 

8 BatchNorm 7x7 7 9 64 
 

9 Dropout 7x7 8 10   prob=0.2 

14 Flatten 784 13 15&16     

15 Dense 
(Aux Out) 

16 14 Out2& 
22 

  f=Sigmoid 

16 Dense 120 14 17 94200 f=ReLU 

17 BatchNorm 120 16 18 480 

18 Dropout 120 17 18   prob=0.5 

19 Dense 84 18 19 10164 f=ReLU 

20 BatchNorm 84 19 20 336 

21 Dropout 84 20 21   prob=0.5 

22 Dense 
(Classifier) 

10 15&21 Out1 850 / 
1010 

f=Softmax 

A. Convolutional Neural Network Implementation  

The models were implemented, trained and tested using 

python and Keras 2.2.0 [41] high-level APIs running on top of 

TensorFlow 1.8.0 [42]. A link to the open-source repository is 

given at the end of this article. Greater detail on the APIs can 

be found in the documentation of these tools available from the 

respective websites [41], [42]. 

The details of the LeNet-5 architecture can be found in the 

original article [39]. However, we updated the architecture by 

adding two types of layers, which were proved to be beneficial 

for the generalisation. The Dropout layer, which operates by 

Conv
(layers 2-14)

Dense
(layers 
16-21)

Softmax

Number 
class

Conv
(layers 2-14)

Dense
(layers 
16-21)

Softmax

Number 
class

Softmax

Number 
class

Conv
(layers 2-14)

Dense
(layers 
16-21)

Softmax

Number 
class

Sigmoid

a b c



randomly dropping a fraction of input at each update at training 

time. Dropout layers help to prevent overfitting. Dropout rates 

were 0.2 for the convolutional layers, while they were 0.5 for 

the densely connected layers. Like all the other parameters, 

these rates were shown to be optimal by previous extensive 

analysis, also including the MNIST dataset [43], [44]. The 

Batch Normalization layer, which scales the output of the 

previous layer by standardizing the activations of each input 

variable per mini-batch. This has the effect of inducing a more 

predictive and stable behaviour of the gradients, which allows 

faster training [45]. 

B. Algorithms for training the networks 

For the training, we selected the most famous adaptive 

learning method, based on stochastic gradient descent, for 

training the models: The Adaptive Moment Estimation 

algorithm (Adam) [46]. The training was executed in mini-

batches of 32 examples (128 in the case of the full database). 

The use of mini-batches proved to improve the generalization 

of the network, i.e. the accuracy in the test set. As 

recommended, we left the parameters of this optimizer at their 

default values, which follow those provided in the original 

publications cited. Adam is widely used in the field of deep 

learning because it is fast and achieves good results. Adam is a 

gradient-based method that maintains per-parameter ( 𝜃 ) 

learning rates: 

𝜃(𝑡 + 1) = 𝜃(𝑡) −
𝜂

√𝑣̂(𝜃, 𝑡)
∙

𝜕𝐿

𝜕𝜽
(𝑡) 

Where 
𝜕𝐿

𝜕𝜽
(𝑡) is the gradient of the loss function 𝐿(𝑡) at epoch 

t, 𝜂 is the learning rate, which, in our experiments, has been 

set as 0.001 and 𝛾  is 0.9. Adam makes use of a moving 

average of the squared gradient 𝑣̂(𝜃, 𝑡): 

𝑣̂(𝜃, 𝑡) = 𝛾 ∙ 𝑣̂(𝜃, 𝑡 − 1) + (1 − 𝛾) ∙ (
𝜕𝐿

𝜕𝜃
(𝑡))

2

 

while it keeps an exponentially decaying average of past 

gradients 𝑚̂(𝜃, 𝑡) , similar to the momentum. Adam's 

parameter update is given by: 

𝜃(𝑡 + 1) = 𝜃(𝑡) − 𝜂
𝑚̂(𝜃, 𝑡)

√𝑣̂(𝜃, 𝑡)
 

Specifically, 𝑣̂(𝜃, 𝑡) and 𝑚̂(𝜃, 𝑡)  are calculated using the 

parameters 𝛽1  and 𝛽2  to control the decay rates of these 

moving averages: 

𝑚̂(𝜃, 𝑡 + 1) =
𝑚(𝜃,𝑡)

1−𝛽1
𝑡    

where  𝑚(𝜃, 𝑡) = 𝛽1 ∙ 𝑚(𝜃, 𝑡 − 1) + (1 − 𝛽1) ∙  
𝜕𝐿

𝜕𝜃
(𝑡) 

𝑣̂(𝜃, 𝑡 + 1) =
𝑣(𝜃,𝑡)

1−𝛽2
𝑡    

where 𝑣(𝜃, 𝑡) = 𝛽2 ∙ 𝑣(𝜃, 𝑡 − 1) + (1 − 𝛽2) ∙  (
𝜕𝐿

𝜕𝜃
(𝑡))

2

 

Note that 𝛽1
𝑡  and 𝛽2

𝑡  denote the parameters 𝛽1  and 𝛽2  to the 

power of 𝑡 . Suggested default settings are 𝜂 = 0.001 , 𝛽1 =
0.9  and 𝛽2 = 0.999 . These values are used in our 

experiments. 

1) Loss function 

The Loss function 𝐿(𝑡)  is the Cross-entropy function, 

which computes the performance given by network outputs and 

targets in such a way that extremely inaccurate outputs are 

heavily penalized, while a very small penalty is given to almost 

correct classifications. 

The calculation of the Cross-entropy depends on the task: 

Categorical 𝐻𝐶  when classifying into the number classes; 

Binary 𝐻𝐵 predicting the embodied representations. 

In the case of classification, the output 𝒑 is a categorical 

vector of N probabilities that represent the likelihood of each of 

the N classes with ∑ 𝒑 = 1 , while 𝒚̃  is a one-hot encoded 

vector (1 for the target class, 0 for the rest). The Categorical 

cross-entropy 𝐻𝐶  is calculated as the average of the cross-

entropy of each pair of output-target elements (classes): 

𝐻𝐶  =
1

𝑁
∑ −𝑦𝑖̃ ∙ log(𝑝𝑖)

𝑁

𝑖=1

 

When the target is the embodied representation, the output 

is a vector 𝒛 of 𝐾 independent elements. The cross-entropy can 

be calculated considering 2 binary classes: one corresponds to 

the target value, zero otherwise. In this case, the loss function 

is calculated using the binary cross-entropy expression: 

𝐻𝐵 =
1

𝐾
∑ −𝑦𝑖̃ ∙ log(𝑧𝑖) − (1 − 𝑦𝑖̃) ∙ log(1 − 𝑧𝑖)

𝐾

𝑖=1

 

In the training phase of the embodied model, the loss is the 

weighted sum of the losses for the two outputs (Categorical 

and Binary Cross-entropy), weighted respectively: 1 for the 

classification loss; a varying value between 1 and 0.1, 

depending on the number of examples, for the embodied loss. 

C. Statistical Analysis 

We used the Student t-test to calculate the p-value and 

confirm the statistical significance of the comparisons. To 

evaluate the effect size of the differences, we calculated 

Cohen's d [47]. Cohen suggested that d=0.2 be considered a 

“small” (trivial) effect size, 0.5 represents a “medium” effect 

size and 0.8 a “large” effect size [47]. 

IV. EXPERIMENTAL RESULTS 

This section presents the experimental results of the models 

obtained by training and testing the CNN architecture with the 

MNIST handwritten digits database. The analysis simulates a 

gradual course of education typical for the children, we have 

investigated the models' performance of varying size of 

training examples: 256, 512, 1024, 3200, 6400. These can also 

be considered as different levels of "practice". We also 

considered the full 60000 for information and comparability 

with the other experiments in the machine learning literature. 

The embodied models are compared against the standard 

models built with visual inputs only, which constitute the 

baseline for the comparison. The results of the inception-like 

model are presented for additional comparison with a state-of-

the-art approach. 



Models were trained for 20 epochs as in [39]. Each model 

was trained and tested 21 times. The Figures and Tables in this 

section report the average accuracy and the standard deviation 

of the 21 repetitions, with a particular focus on the 

development of the learning, i.e. how the performance 

progresses from the first epoch until the last one with an 

increasing number of training examples. In the following, we 

present an analysis of the models’ performance, i.e. accuracy 

of recognition, on the whole database (examples used for 

training plus testing) and on the testing set only. 

A. Analysis of the results on the whole database 

In several possible applications, robots operate in a 

restricted environment in which they may be required to 

recognise the same digits that are presented for the training. 

For instance, this is the case of personal assistants that will 

serve a few users, who are likely to present very similar digits 

for training and recognition. In these cases, it is essential to 

quickly achieve the best accuracy in both the training and 

testing set. Here we analyse the performance on the whole 

database, i.e. training and testing. For example, in the smallest 

size considered, the models are trained with 256 examples, 

then we present the results on the prediction of 10256 digits, 

i.e. 256 training plus 10000 testing examples. 

TABLE II. ACCURACY RATES FOR VARYING TRAINING 

EXAMPLE SIZES (THE WHOLE DATABASE).  

Examples 
Embodied Inception-like Baseline 

avg stdev avg stdev d avg stdev d 

After 1 epoch 
256 0.272 0.044 0.250 0.030 -0.534 0.271 0.050 -0.030 
512 0.478 0.050 0.433 0.041 -0.889 0.428 0.053 -0.880 

1024 0.693 0.024 0.606 0.037 -2.582 0.586 0.033 -3.413 
3200 0.824 0.012 0.731 0.017 -5.811 0.733 0.014 -6.335 
6400 0.856 0.008 0.750 0.010 -10.451 0.756 0.012 -8.797 

60000 0.892 0.006 0.823 0.020 -4.346 0.817 0.009 -8.845 
After 20 epochs 

256 0.845 0.013 0.830 0.024 -0.740 0.818 0.026 -1.182 
512 0.906 0.009 0.891 0.016 -1.054 0.885 0.013 -1.763 

1024 0.943 0.006 0.931 0.006 -1.847 0.926 0.008 -2.168 
3200 0.969 0.003 0.959 0.003 -2.729 0.961 0.002 -2.600 
6400 0.977 0.001 0.967 0.002 -4.993 0.966 0.002 -5.524 

60000 0.986 0.001 0.980 0.001 -6.329 0.980 0.001 -7.800 

Table II presents the Average accuracies (Avg) on the 

whole dataset, with standard deviations (StDev) and Cohen's d. 

Values in bold are significantly (p<0.05) better than the others. 

Table II shows that the embodied model is significantly 

better than the baseline and the inception-like models in all 

case considered and with a large (>0.8) effect size. There is no 

statistical significance only in the first few epochs of the 

smallest sample size.  

The full development of the training is presented in Figure 

3, where the graph shows the accuracy rate of all the 20 epochs 

for three sample sizes. Figure 2 compares the baseline (yellow 

lines), the embodied model with the iCub robot fingers (blue 

lines) and the Inception-like model (red lines). A significant 

increase in the accuracy is visible in the first epochs and for all 

sample sizes, while the improvement is reduced but still 

significantly present in all the other cases. Figure 2 shows also 

that the accuracy, of both the baseline and the embodied 

model, reaches a maximum after around 10-15 epochs and 

there is no overfitting. 

(a) 512 Examples training; 10512 testing. 

(b) 3,200 Examples training; 13,200 testing. 

(c) 60,000 examples training; 70,000 testing (full database) 

Fig. 3. The accuracy rate of the models on the whole database (blue: 

robot/embodied; red: Inception-like; yellow: Baseline). a, small: 10,512 

examples; b, medium: 13,200 examples; c, full database (70,000). 

B. Analysis of performance on the testing set 

This section presents the usual analysis of the performance 

on the testing set as required for validation and for showing the 

generalisation abilities of the models. 

Table III presents the Average accuracies (Avg) on the test 

set, with standard deviations (StDev) and Cohen's d. Values in 

bold are significantly (p<0.05) better than the others. 
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TABLE III. ACCURACY RATES FOR VARYING TRAINING 

EXAMPLE SIZES (TESTING SET).  

Examples 
Embodied Inception-like Baseline 

avg stdev avg stdev d avg stdev d 

After 1 epoch 

256 0.267 0.045 0.251 0.031 -0.358 0.266 0.051 -0.008 

512 0.494 0.051 0.447 0.043 -0.891 0.438 0.056 -0.943 

1024 0.722 0.024 0.645 0.039 -2.181 0.626 0.035 -2.887 

3200 0.882 0.011 0.834 0.017 -3.000 0.840 0.015 -2.875 

6400 0.929 0.007 0.896 0.013 -2.974 0.899 0.011 -2.967 

60000 0.971 0.003 0.963 0.005 -1.671 0.964 0.004 -1.865 

After 20 epochs 

256 0.844 0.014 0.831 0.024 -0.596 0.820 0.027 -1.038 

512 0.905 0.009 0.893 0.016 -0.871 0.887 0.013 -1.449 

1024 0.940 0.007 0.935 0.006 -0.772 0.929 0.007 -1.408 

3200 0.968 0.004 0.966 0.003 -0.271 0.968 0.002 0.085 

6400 0.977 0.002 0.977 0.002 -0.125 0.976 0.002 -0.406 

60000 0.991 0.001 0.990 0.001 -0.432 0.991 0.001 -0.307 

Table III confirms the initial advantage of the embodied 

model over the others. Though, the advantage is lost with the 

medium-large sizes of training data, where there is no 

statistically significant difference among the three models. 

However, after 20 epochs, the recognition rate of the embodied 

model is usually higher with a medium effect size. 

Figure 4 shows the development of the accuracy on the 

training set on three examples with different sample sizes. The 

graphs show the accuracy rate of all the 20 epochs for the 

testing set only. Figure 3 presents the baseline (yellow lines), 

the embodied model with the iCub robot fingers (blue lines) 

and the Inception-like model (red lines). A significant increase 

in the accuracy is clearly visible in the first epochs, except in 

the case of 256 samples for training where it took 4 epochs 

before the increase became significant. The improvement is 

reduced but still significantly present usually until around 10-

15 epochs, where the embodied model converges. Figure 3 

shows also that there is no overfitting. 

C. Discussion 

Summarising the results of the analyses, we see that the 

embodied approach improves the fitting with the training data 

without affecting the generalisation of the training. Moreover, 

when the training examples are few, the embodied approach is 

also beneficial to improve the generalisation in the test set. 

The experiments show that extending the training with 

additional output, e.g. the inception-like, doesn’t seem 

beneficial in the cases considered. There is an increased 

efficiency only if the training is augmented by representations 

that indicate the number magnitude, which can help to 

disambiguate and, therefore, speed-up the training as seen for 

the spoken digits [21]. We suggest the use of a finger-based 

representation because this can be naturally created by a 

humanoid robot via interaction with a human teacher, who can 

open and close the fingers of the robot to provide the additional 

information. 

 (a) 256 Examples training; 10,000 testing. 

 
(b) 1,024 Examples training; 10,000 testing. 

 
(c) 60,000 examples training; 10,000 testing (full database) 

Fig. 4. The accuracy rate of the models on the test set (blue: robot/embodied; 

red: Inception-like; yellow: Baseline). a, small: 256 training examples; b, 

medium: 1,024 training examples; c, 60,000 training examples. 

V. CONCLUSION 

Recent studies in developmental psychology and cognitive 

neuroscience demonstrated a pivotal role of fingers in 

developing number cognition. Inspired by these studies, this 

article presented an investigation on the development of 

handwritten digit recognition when convolutional neural 

networks are embodied in the humanoid robot iCub's and its 

proprioceptive information can be used to augment the 

training. Indeed, we created a model that integrates the 

previous experience that links finger configurations to number 

classes. The model is then trained to build upon this link to 

predict the finger configurations as an additional output and, at 

the same time, as an input for the classifier. 
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The experiments with the embodied approach show that the 

robot’s fingers can boost the learning, especially when the 

training examples are numerically limited. This is a common 

scenario in applied robotics, where it is likely that robots will 

learn with only a small amount of data, acquired through 

interaction.  

From the machine learning point of view, the embodied 

strategy could be also seen as a bio-inspired extension to the 

"auxiliary" classifiers that were introduced in the Google 

Inception network to prevent the middle part of the network 

from "dying out" because of the limitations of backpropagation 

algorithms in propagating the error through the many layers of 

deep CNN [40]. Indeed, the experimental comparison with an 

inception-like model shows the higher efficiency of the 

embodied approach in the case of limited training set sizes. 

The analysis of the results shows similarities with the 

transition from early to mature mathematical cognition 

observed in longitudinal studies with children, who initially 

perform better when they can use fingers, but, after they grow 

in experience, gradually abandon finger representations 

without affecting the accuracy [48]. We believe that these 

findings can confirm the importance of the body for developing 

number knowledge also in artificial neural network models and 

show the benefits of the embodied cognition ideas also in the 

machine learning context. 

Future studies will focus on multimodal models that can 

support the investigation on the interconnections between 

spoken and written digits. Furthermore, realistic and in-the-

wild applications will be investigated, for instance, interactive 

learning from a human teacher with the use of vision (camera 

inputs) to recognise robot’s and human’s fingers [49]. 
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