15 research outputs found

    Intra-Body Communications for Nervous System Applications: Current Technologies and Future Directions

    Full text link
    The Internet of Medical Things (IoMT) paradigm will enable next generation healthcare by enhancing human abilities, supporting continuous body monitoring and restoring lost physiological functions due to serious impairments. This paper presents intra-body communication solutions that interconnect implantable devices for application to the nervous system, challenging the specific features of the complex intra-body scenario. The presented approaches include both speculative and implementative methods, ranging from neural signal transmission to testbeds, to be applied to specific neural diseases therapies. Also future directions in this research area are considered to overcome the existing technical challenges mainly associated with miniaturization, power supply, and multi-scale communications.Comment: https://www.sciencedirect.com/science/article/pii/S138912862300163

    6G wireless systems : a vision, architectural elements, and future directions

    Get PDF
    Internet of everything (IoE)-based smart services are expected to gain immense popularity in the future, which raises the need for next-generation wireless networks. Although fifth-generation (5G) networks can support various IoE services, they might not be able to completely fulfill the requirements of novel applications. Sixth-generation (6G) wireless systems are envisioned to overcome 5G network limitations. In this article, we explore recent advances made toward enabling 6G systems. We devise a taxonomy based on key enabling technologies, use cases, emerging machine learning schemes, communication technologies, networking technologies, and computing technologies. Furthermore, we identify and discuss open research challenges, such as artificial-intelligence-based adaptive transceivers, intelligent wireless energy harvesting, decentralized and secure business models, intelligent cell-less architecture, and distributed security models. We propose practical guidelines including deep Q-learning and federated learning-based transceivers, blockchain-based secure business models, homomorphic encryption, and distributed-ledger-based authentication schemes to cope with these challenges. Finally, we outline and recommend several future directions. © 2013 IEEE

    Yearbook 2019 (Institute of Technical Physics and Materials Science)

    Get PDF

    Optical Diagnostics in Human Diseases

    Get PDF
    Optical technologies provide unique opportunities for the diagnosis of various pathological disorders. The range of biophotonics applications in clinical practice is considerably wide given that the optical properties of biological tissues are subject to significant changes during disease progression. Due to the small size of studied objects (from μm to mm) and despite some minimum restrictions (low-intensity light is used), these technologies have great diagnostic potential both as an additional tool and in cases of separate use, for example, to assess conditions affecting microcirculatory bed and tissue viability. This Special Issue presents topical articles by researchers engaged in the development of new methods and devices for optical non-invasive diagnostics in various fields of medicine. Several studies in this Special Issue demonstrate new information relevant to surgical procedures, especially in oncology and gynecology. Two articles are dedicated to the topical problem of breast cancer early detection, including during surgery. One of the articles is devoted to urology, namely to the problem of chronic or recurrent episodic urethral pain. Several works describe the studies in otolaryngology and dentistry. One of the studies is devoted to diagnosing liver diseases. A number of articles contribute to the studying of the alterations caused by diabetes mellitus and cardiovascular diseases. The results of all the presented articles reflect novel innovative research and emerging ideas in optical non-invasive diagnostics aimed at their wider translation into clinical practice

    Programme and The Book of Abstracts / Twelfth Annual Conference YUCOMAT 2010, Herceg Novi, September 6–10, 2010

    Get PDF
    The First Conference on materials science and engineering, including physics, physical chemistry, condensed matter chemistry, and technology in general, was held in September 1995, in Herceg Novi. An initiative to establish Yugoslav Materials Research Society was born at the conference and, similar to other MR societies in the world, the programme was made and objectives determined. The Yugoslav Materials Research Society (Yu-MRS), a nongovernment and non-profit scientific association, was founded in 1997 to promote multidisciplinary goal-oriented research in materials science and engineering. The main task and objective of the Society has been to encourage creativity in materials research and engineering to reach a harmonic coordination between achievements in this field in our country and analogous activities in the world with an aim to include our country into global international projects.\ud Until 2003, Conferences were held every second year and then they grew into Annual Conferences that were traditionally held in Herceg Novi in September of every year. In 2007 Yu-MRS formed two new MRS: MRS-Serbia (official successor of Yu-MRS) and MRS-Montenegro (in founding). In 2008, MRS – Serbia became a member of FEMS (Federation of European Materials Societies).\u

    Electrochemical sensor system architecture using the CMOS-MEMS technology for cytometry applications

    Get PDF
    This thesis presents the development process of an integrated sensor-system-on-chip for recording the parameters of blood cells. The CMOS based device consists of the two flow-through sensor arrays, stacked one on top of the other. The sensors are able to detect the biological cell in terms of its physical size and the surface charge on a cell’s membrane. The development of the measurement system was divided into several stages these were to design and implement the two sensor arrays complemented with readout circuitry onto a single CMOS chip to create an on-chip membrane with embedded flow-through micro-channels by a CMOS compatible post-processing techniques to encapsulate and hermeti-cally package the device for liquid chemistry experiments, to test and characterise the two sensor arrays together with readout electronics, to develop control and data acquisition software and to detect the biological cells using the complete measurement system. Cy-tometry and haematology fields are closely related to the presented work, hence it is envis-aged that the developed technology enables further integration and miniaturisation of the biomedical instrumentation. The two vertically stacked 4 x 4 flow-through sensor arrays, embedded into an on-chip membrane, were implemented in a single silicon chip device together with a readout circuitry for each of the sensor sets. To develop a CMOS-MEMS device the design and fabrication was carried out using a commercial process design kit (0.35 µm 4-Metal, 2-Poly, CMOS) as well as the foundry service. Thereafter the device was post-processed in-house to develop the on-chip membrane and open the sensing micro-apertures. The two types of sensor were integrated on the silicon dice for multi-parametric characterisation of the analyte. To read the cell membrane charge the ion sensitive field effect transistor (ISFET) was utilised and for cell size (volume) detection an impedance sensor (Coulter counter) was used. Both sensors rely on a flow-through mode of operation, hence the constant flow of the analyte sample could be maintained. The Coulter counter metal electrode was exposed to the solution, while the ISFET floating gate electrode maintained contact with the analyte through a charge sensitive membrane constructed of a dielectric material (silicon dioxide) lining the inside of the micro-pore. The outside size of each of the electrodes was 100 µm x 100 µm and the inside varied from 20 µm x 20 µm to 58 µm x 58 µm. The sense aperture size also varied from 10 µm x 10 µm to 16 µm x 16 µm. The two stacked micro-electrode arrays were layed out on an area of 5002 µm2. The CMOS-MEMS device was fit into a custom printed circuit board (PCB) chip carrier, thereafter insulated and hermetically packaged. Microfluidic ports were attached to the packaged module so that the analyte can be introduced and drained by a flow-through mode of operation. The complete microfluidic system and packaging was assembled and thereafter evaluated for correct operation. Undisturbed flow of the analyte solution is es-sential for the sensor operation. This is related to the fact that the electrochemical response of both sensors depends on the analyte flow through the sense micro-apertures thus any aggregation of the sample within the microfluidic system would cause clogging of the mi-cro-pores. The on-chip electronic circuitry was characterised, and after comparison with the simulated results found to be within an error margin of what enables it for reliable sensor signal readout. The measurement system is automated by software control so that the bias parame-ters can be set precisely, it also helped while error debugging. Analogue signals from the two sensor arrays were acquired, later processed and stored by a data acquisition system. Both control and data capture systems are implemented in a high level programming lan-guage. Furthermore both are integrated and operated in a one window based graphical user interface (GUI). A fully functional measurement system was used as a flow-through cytometer for living cells detection. The measurements results showed that the system is capable of single cell detection and on-the-fly data display
    corecore