7,528 research outputs found

    Charting the Algorithmic Complexity of Waypoint Routing

    Get PDF
    Modern computer networks support interesting new routing models in which traffic flows from a source sto a destination t can be flexibly steered through a sequence of waypoints, such as (hardware) middleboxes or (virtualized) network functions (VNFs), to create innovative network services like service chains or segment routing. While the benefits and technological challenges of providing such routing models have been articulated and studied intensively over the last years, less is known about the underlying algorithmic traffic routing problems. The goal of this paper is to provide the network community with an overview of algorithmic techniques for waypoint routing and also inform about limitations due to computational hardness. In particular, we put the waypoint routing problem into perspective with respect to classic graph theoretical problems. For example, we find that while computing a shortest path from a source s to a destination t is simple (e.g., using Dijkstra's algorithm), the problem of finding a shortest route from s to t via a single waypoint already features a deep combinatorial structure.</jats:p

    Walking Through Waypoints

    Full text link
    We initiate the study of a fundamental combinatorial problem: Given a capacitated graph G=(V,E)G=(V,E), find a shortest walk ("route") from a source s∈Vs\in V to a destination t∈Vt\in V that includes all vertices specified by a set W⊆V\mathscr{W}\subseteq V: the \emph{waypoints}. This waypoint routing problem finds immediate applications in the context of modern networked distributed systems. Our main contribution is an exact polynomial-time algorithm for graphs of bounded treewidth. We also show that if the number of waypoints is logarithmically bounded, exact polynomial-time algorithms exist even for general graphs. Our two algorithms provide an almost complete characterization of what can be solved exactly in polynomial-time: we show that more general problems (e.g., on grid graphs of maximum degree 3, with slightly more waypoints) are computationally intractable

    On the (non-)existence of polynomial kernels for Pl-free edge modification problems

    Full text link
    Given a graph G = (V,E) and an integer k, an edge modification problem for a graph property P consists in deciding whether there exists a set of edges F of size at most k such that the graph H = (V,E \vartriangle F) satisfies the property P. In the P edge-completion problem, the set F of edges is constrained to be disjoint from E; in the P edge-deletion problem, F is a subset of E; no constraint is imposed on F in the P edge-edition problem. A number of optimization problems can be expressed in terms of graph modification problems which have been extensively studied in the context of parameterized complexity. When parameterized by the size k of the edge set F, it has been proved that if P is an hereditary property characterized by a finite set of forbidden induced subgraphs, then the three P edge-modification problems are FPT. It was then natural to ask whether these problems also admit a polynomial size kernel. Using recent lower bound techniques, Kratsch and Wahlstrom answered this question negatively. However, the problem remains open on many natural graph classes characterized by forbidden induced subgraphs. Kratsch and Wahlstrom asked whether the result holds when the forbidden subgraphs are paths or cycles and pointed out that the problem is already open in the case of P4-free graphs (i.e. cographs). This paper provides positive and negative results in that line of research. We prove that parameterized cograph edge modification problems have cubic vertex kernels whereas polynomial kernels are unlikely to exist for the Pl-free and Cl-free edge-deletion problems for large enough l

    The Network Improvement Problem for Equilibrium Routing

    Full text link
    In routing games, agents pick their routes through a network to minimize their own delay. A primary concern for the network designer in routing games is the average agent delay at equilibrium. A number of methods to control this average delay have received substantial attention, including network tolls, Stackelberg routing, and edge removal. A related approach with arguably greater practical relevance is that of making investments in improvements to the edges of the network, so that, for a given investment budget, the average delay at equilibrium in the improved network is minimized. This problem has received considerable attention in the literature on transportation research and a number of different algorithms have been studied. To our knowledge, none of this work gives guarantees on the output quality of any polynomial-time algorithm. We study a model for this problem introduced in transportation research literature, and present both hardness results and algorithms that obtain nearly optimal performance guarantees. - We first show that a simple algorithm obtains good approximation guarantees for the problem. Despite its simplicity, we show that for affine delays the approximation ratio of 4/3 obtained by the algorithm cannot be improved. - To obtain better results, we then consider restricted topologies. For graphs consisting of parallel paths with affine delay functions we give an optimal algorithm. However, for graphs that consist of a series of parallel links, we show the problem is weakly NP-hard. - Finally, we consider the problem in series-parallel graphs, and give an FPTAS for this case. Our work thus formalizes the intuition held by transportation researchers that the network improvement problem is hard, and presents topology-dependent algorithms that have provably tight approximation guarantees.Comment: 27 pages (including abstract), 3 figure
    • …
    corecore