2,905,195 research outputs found

    \u3cem\u3eKennedy v. The Baltimore Insurance Company\u3c/em\u3e, 3 H. & J. 367 (1813): The Story of One Baltimore Merchant Among Many Fighting an Insurance Company in Times of War

    Get PDF
    The Napoleonic Wars in the early 1800’s resulted in many Baltimore merchants obtaining insurance for their vessels and cargo. During this period of unrest, Lemuel Taylor and John F. Kennedy insured a Baltimore vessel which was subsequently captured by the British. This paper contextualizes the case of Kennedy v. The Baltimore Insurance Company within this period and illustrates the struggles faced by many merchants who sought to be reimbursed for their losses. I also tried to focus on the historical backgrounds of the key players to the case, especially Lemuel Taylor and John F. Kennedy. All together, the case of Kennedy v. The Baltimore Insurance Company presents the opportunity to recreate the legal history surrounding maritime insurance in Maryland during the War of 1812

    Testing Gravity Against Early Time Integrated Sachs-Wolfe Effect

    Full text link
    A generic prediction of general relativity is that the cosmological linear density growth factor DD is scale independent. But in general, modified gravities do not preserve this signature. A scale dependent DD can cause time variation in gravitational potential at high redshifts and provides a new cosmological test of gravity, through early time integrated Sachs-Wolfe (ISW) effect-large scale structure (LSS) cross correlation. We demonstrate the power of this test for a class of f(R)f(R) gravity, with the form f(R)=λ1H02exp(R/λ2H02)f(R)=-\lambda_1 H_0^2\exp(-R/\lambda_2H_0^2). Such f(R)f(R) gravity, even with degenerate expansion history to Λ\LambdaCDM, can produce detectable ISW effect at z\ga 3 and l\ga 20. Null-detection of such effect would constrain λ2\lambda_2 to be λ2>1000\lambda_2>1000 at >95>95% confidence level. On the other hand, robust detection of ISW-LSS cross correlation at high zz will severely challenge general relativity.Comment: 5 pages, 2 figures. Accepted to PRD. v2: Revised to address to more general audience. v3: added discussion

    Circular 61

    Get PDF
    Rapeseed is the oil-bearing seed from plants of the Brassica genus. It grows well in the cooler agricultural regions o f the world and for this reason has long been thought to be a promising crop for interior Alaska. Rapeseed has been grow n in India and China for thousands and in Europe for hundreds o f years (Bolton 1980). Its history in North America began in 1943 when a small quantity of seed was imported into Canada. In recent years, its production has been largely that from cultivars bred for production of seed low in erucic acid and glucosinolate content. Seed from these cultivars is referred to by the Canadian Rapeseed Industry as canola. Its qualities are desirable in the edible-oil market, the largest market for products from canola seed. Canada is now one of the world’s largest producers and is the world’s largest exporter o f rapeseed. The meal that remains after oil extraction is high in protein and is used as a supplement in livestock feeds. The whole seed can also be used as a feed supplement. Some cultivars o f rapeseed that are high in erucic acid are also grow n for use in plastics and industrial oils (Genser and Eskin 1979). In addition, forage rapeseed cultivars can be used as livestock pasture. Research concerning the production of rapeseed has been addressed by the Agricultural and Forestry Experiment Station (AFES) for several years. O f specific concern has been the selection of appropriate cultivars (Wooding et al. 1978), response to various nitrogen (N) rates, row spacings and seeding rates (Lewis and Knight 1987), performance in reduced-tillage systems in rotation with barley (Knight and Lewis 1986), the potential for frost seeding in late fall and early spring (Knight and Sparrow 1984) and response to boron (B) to enhance early seed ripening (Wooding 1985). In addition, in 1978 the Cooperative Extension Service (CES) began conducting seminars on production o f rapeseed for Alaskan farmers. In 1979 and 1980, CES employed Dr. J.L . Bolton, a rapeseed specialist from the University o f Alberta, in an extension capacity to give technical assistance to farmers on producing rapeseed (Bolton 1980)
    corecore