16,785 research outputs found

    Deep Room Recognition Using Inaudible Echos

    Full text link
    Recent years have seen the increasing need of location awareness by mobile applications. This paper presents a room-level indoor localization approach based on the measured room's echos in response to a two-millisecond single-tone inaudible chirp emitted by a smartphone's loudspeaker. Different from other acoustics-based room recognition systems that record full-spectrum audio for up to ten seconds, our approach records audio in a narrow inaudible band for 0.1 seconds only to preserve the user's privacy. However, the short-time and narrowband audio signal carries limited information about the room's characteristics, presenting challenges to accurate room recognition. This paper applies deep learning to effectively capture the subtle fingerprints in the rooms' acoustic responses. Our extensive experiments show that a two-layer convolutional neural network fed with the spectrogram of the inaudible echos achieve the best performance, compared with alternative designs using other raw data formats and deep models. Based on this result, we design a RoomRecognize cloud service and its mobile client library that enable the mobile application developers to readily implement the room recognition functionality without resorting to any existing infrastructures and add-on hardware. Extensive evaluation shows that RoomRecognize achieves 99.7%, 97.7%, 99%, and 89% accuracy in differentiating 22 and 50 residential/office rooms, 19 spots in a quiet museum, and 15 spots in a crowded museum, respectively. Compared with the state-of-the-art approaches based on support vector machine, RoomRecognize significantly improves the Pareto frontier of recognition accuracy versus robustness against interfering sounds (e.g., ambient music).Comment: 29 page

    Cloud-based or On-device: An Empirical Study of Mobile Deep Inference

    Full text link
    Modern mobile applications are benefiting significantly from the advancement in deep learning, e.g., implementing real-time image recognition and conversational system. Given a trained deep learning model, applications usually need to perform a series of matrix operations based on the input data, in order to infer possible output values. Because of computational complexity and size constraints, these trained models are often hosted in the cloud. To utilize these cloud-based models, mobile apps will have to send input data over the network. While cloud-based deep learning can provide reasonable response time for mobile apps, it restricts the use case scenarios, e.g. mobile apps need to have network access. With mobile specific deep learning optimizations, it is now possible to employ on-device inference. However, because mobile hardware, such as GPU and memory size, can be very limited when compared to its desktop counterpart, it is important to understand the feasibility of this new on-device deep learning inference architecture. In this paper, we empirically evaluate the inference performance of three Convolutional Neural Networks (CNNs) using a benchmark Android application we developed. Our measurement and analysis suggest that on-device inference can cost up to two orders of magnitude greater response time and energy when compared to cloud-based inference, and that loading model and computing probability are two performance bottlenecks for on-device deep inferences.Comment: Accepted at The IEEE International Conference on Cloud Engineering (IC2E) conference 201

    vSkyConf: Cloud-assisted Multi-party Mobile Video Conferencing

    Get PDF
    As an important application in the busy world today, mobile video conferencing facilitates virtual face-to-face communication with friends, families and colleagues, via their mobile devices on the move. However, how to provision high-quality, multi-party video conferencing experiences over mobile devices is still an open challenge. The fundamental reason behind is the lack of computation and communication capacities on the mobile devices, to scale to large conferencing sessions. In this paper, we present vSkyConf, a cloud-assisted mobile video conferencing system to fundamentally improve the quality and scale of multi-party mobile video conferencing. By novelly employing a surrogate virtual machine in the cloud for each mobile user, we allow fully scalable communication among the conference participants via their surrogates, rather than directly. The surrogates exchange conferencing streams among each other, transcode the streams to the most appropriate bit rates, and buffer the streams for the most efficient delivery to the mobile recipients. A fully decentralized, optimal algorithm is designed to decide the best paths of streams and the most suitable surrogates for video transcoding along the paths, such that the limited bandwidth is fully utilized to deliver streams of the highest possible quality to the mobile recipients. We also carefully tailor a buffering mechanism on each surrogate to cooperate with optimal stream distribution. We have implemented vSkyConf based on Amazon EC2 and verified the excellent performance of our design, as compared to the widely adopted unicast solutions.Comment: 10 page
    • …
    corecore