4,449 research outputs found

    Synthesized cooperative strategies for intelligent multi-robots in a real-time distributed environment : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Science at Massey University, Albany, New Zealand

    Get PDF
    In the robot soccer domain, real-time response usually curtails the development of more complex Al-based game strategies, path-planning and team cooperation between intelligent agents. In light of this problem, distributing computationally intensive algorithms between several machines to control, coordinate and dynamically assign roles to a team of robots, and allowing them to communicate via a network gives rise to real-time cooperation in a multi-robotic team. This research presents a myriad of algorithms tested on a distributed system platform that allows for cooperating multi- agents in a dynamic environment. The test bed is an extension of a popular robot simulation system in the public domain developed at Carnegie Mellon University, known as TeamBots. A low-level real-time network game protocol using TCP/IP and UDP were incorporated to allow for a conglomeration of multi-agent to communicate and work cohesively as a team. Intelligent agents were defined to take on roles such as game coach agent, vision agent, and soccer player agents. Further, team cooperation is demonstrated by integrating a real-time fuzzy logic-based ball-passing algorithm and a fuzzy logic algorithm for path planning. Keywords Artificial Intelligence, Ball Passing, the coaching system, Collaborative, Distributed Multi-Agent, Fuzzy Logic, Role Assignmen

    Artificial Intelligence and Systems Theory: Applied to Cooperative Robots

    Full text link
    This paper describes an approach to the design of a population of cooperative robots based on concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - Instituto Superior Tecnico (ISR/IST) in Lisbon. The acronym of the project stands both for "Society of Robots" and "Soccer Robots", the case study where we are testing our population of robots. Designing soccer robots is a very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect and avoid static (walls, stopped robots) and dynamic (moving robots) obstacles. Furthermore, they must cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task planning and coordination, including cooperative reinforcement learning in cooperative and adversarial environments, and behavior-based architectures for real time task execution of cooperating robot teams

    Evolutionary Networks for Multi-Behavioural Robot Control : A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science Massey University, Albany, New Zealand

    Get PDF
    Artificial Intelligence can be applied to a wide variety of real world problems, with varying levels of complexity; nonetheless, real world problems often demand for capabilities that are difficult, if not impossible to achieve using a single Artificial Intelligence algorithm. This challenge gave rise to the development of hybrid systems that put together a combination of complementary algorithms. Hybrid approaches come at a cost however, as they introduce additional complications for the developer, such as how the algorithms should interact and when the independent algorithms should be executed. This research introduces a new algorithm called Cascading Genetic Network Programming (CGNP), which contains significant changes to the original Genetic Network Programming. This new algorithm has the facility to include any Artificial Intelligence algorithm into its directed graph network, as either a judgement or processing node. CGNP introduces a novel ability for a scalable multiple layer network, of independent instances of the CGNP algorithm itself. This facilitates problem subdivision, independent optimisation of these underlying layers and the ability to develop varying levels of complexity, from individual motor control to high level dynamic role allocation systems. Mechanisms are incorporated to prevent the child networks from executing beyond their requirement, allowing the parent to maintain control. The ability to optimise any data within each node is added, allowing for general purpose node development and therefore allowing node reuse in a wide variety of applications without modification. The abilities of the Cascaded Genetic Network Programming algorithm are demonstrated and proved through the development of a multi-behavioural robot soccer goal keeper, as a testbed where an individual Artificial Intelligence system may not be sufficient. The overall role is subdivided into three components and individually optimised which allow the robot to pursue a target object or location, rotate towards a target and provide basic functionality for defending a goal. These three components are then used in a higher level network as independent nodes, to solve the overall multi- behavioural goal keeper. Experiments show that the resulting controller defends the goal with a success rate of 91%, after 12 hours training using a population of 400 and 60 generations
    • …
    corecore