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Abstract 
 
It is proposed that vocabularies for 
representing complex systems with interacting 
agents have a natural lattice hierarchical 
structure.  We investigate this for the example 
of simulated robot soccer, using data taken 
from the RoboCup simulation competition.  
Lattice hierarchies provide symbolic 
representations for reasoning about systems at 
appropriate levels.  We note the difference 
between relational constructs being human-
supplied versus systems that abstract their own 
constructs autonomously.  The lattice 
hierarchical representation underlies both. 
 
 
1. Introduction 
 
The concept of autonomous agents provides an 
abstraction that covers both synthetic agents 
such as robots and biological agents, such as 
plants, animals, and humans.  In particular it 
provides an abstraction that enables us to study 
human behaviour with a new perspective on 
planning and managing socio-technical 
systems.   
 
These includes mundane systems that appear 
to be unpredictable, including urban and 
regional settlements and their transportation 
infrastructure, organisations and their 
management,  and less mundane systems such 
as drug trafficking, organised crime, and 
terrorism. 
 
There are many ways of defining agents.  Ours 
is based on combinatorial mathematics.  The 
basic ideas are sets and relations between sets.  
This includes the special case of many-one 
relations between sets called mappings, or 
functions when the sets are numbers.  Agents 
are represented by constructive algebraic 
structures.  In other words, agents are built 
bottom-up. 
 
This is consistent with a widespread view in 
complexity science.  What we propose that is 
new is how to move up the constructive 
algebraic hierarchy to build higher level 
constructs that allowing symbolic reasoning.  
 

An essential feature of real systems is that the 
hierarchy of representation is rarely tree-like.  
At all level there are connections between 
things, requiring a lattice-like organisation. 
 
Building hierarchical vocabularies takes place 
in the context of combinatorial explosion.  
Even small sets have large numbers of subsets.  
A set with a dozen elements has over four 
thousand subsets, and there are millions of 
ways of selecting an 11-player soccer team 
from a class of thirty students.   
 
It is easy, in theory, to generate all 
combinations of anything.  The research 
challenge addressed by this paper is how can 
useful structures be abstracted from this wealth 
of latent possibilities.  It will be seen that this 
amounts to the question : 
 
“how can we build a lattice-hierarchical 
vocabulary to represent, plan, design, and 
control the emergent dynamics of systems 
of interacting autonomous agents?”. 
 
In Section 2 we will develop the mathematical 
notation under-pinning our approach.  But we 
do not expect mathematics by itself to give 
answers to this question.  We believe that 
computation is another essential ingredient in 
complexity science. 
 
In Section 3 we will illustrate our theory and 
ideas using the simple illustrative example of 
simulated soccer-playing robot agents.  
Although simple in concept, this system can 
generate great complexity.  Understanding and 
controlling this system has attracted the 
attention of some of the world’s best and most 
advanced researchers. 
 
In Section 4 we discuss pattern recognition and 
the lattice hierarchy, and the possibility of 
automatic construct abstraction. 
 
Section 5 presents our conclusions, including 
the lessons to be learned from the study of 
soccer-playing agents, and how this might 
generalise to other systems. 
 
 
 



2. Mathematical Preliminaries 
 
Let S be a system.  S has a set of primitives, X 
= { x1, … , xn }.  A relation, r, on X, is defined 
by a proposition pr: (xr0, xr2, … xrm ) → T,  
where T is a truth set, and { xr0, xr2, … xrm }  ⊆ 
X .  For simplicity in the first instance, let T = 
{True, False}.  This can be extended to 
include probabilistic logic and fuzzy logic.  
We will say that the elements xr1, xr2, … xrm are 
r-related if and only if pr: (xr1, xr2, … xrm ) = 
True.  When this holds we will say the system 
contains the object 〈 xr0, xr2, … xrm ; r 〉, which 
will be called a simplex.  By an abuse of 
language, we will write r:{ xr0, xr2, … xrm }  →  
〈 xr0, xr2, … xrm ; r 〉, and say the relation r 
maps the set { xr0, xr2, … xrm } to the simplex   
〈 xr0, xr2, … xrm ; r 〉. 
 
If the primitives are said to exist at Level N, 
then the simplex 〈 xr0, xr2, … xrm ; r 〉 will be 
said to exist at Level N+1.   
 
Sometimes the object 〈 xr0, xr2, … xrm ; r 〉 has a 
symbolic name. Let Names be the set of 
symbolic names.  Then there is a naming 
mapping, n: 〈 xr0, xr2, … xrm ; r 〉 → name.  
The mappings r and n can be combined in a 
way that maps the set directly to the name of a 
structured object, nr: { xr0, xr2, … xrm } → 
name.  This notation is useful in drawing 
simplified diagrams, but it also allows that the 
structure 〈 xr0, xr2, … xrm ; r 〉 can always be 
constructed, given the set and relation. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  A set of part relationally mapped to 
a named simplex 
 
The simplex, as structure, may have emergent 
properties nor possessed by its component 
elements.  These properties may be structural.  
For example, an aeroplane can fly, when none 
of its parts can, and a choir can sing a harmony 
that individuals cannot.  Emergent properties 
may also be numerical.  For example, a car can 
have acceleration, while its parts cannot. 
 

The generality of hierarchical structure is that 
parts are assembled into wholes, and wholes 
are assembled into higher level wholes.  It is 
also possible for parts to be shared between 
higher level wholes, as illustrated in Figure 2.  
In this case the multi-level structure is called a 
lattice hierarchy (Figure 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2  A multilevel lattice hierarchy 
 
3.  An example: soccer-playing robot agents 
 
Robot soccer has taken over from computer 
chess as a benchmark problem in AI, Artificial 
Life, and Robotics.  The International 
RoboCup Federation has encapsulated the 
challenge as “having  a team of humanoid 
robots beat the human world champion soccer 
players by 2050”.  This challenge unpacks into 
many engineering challenges related to 
materials, electronics, sensing, bio-
engineering, power and control.  It also 
unpacks into the challenge of devising tactics 
and strategy for soccer-playing robot agents. 
 
One of the RoboCup competitions involves a 
soccer simulation in which teams can control 
the actions of simulated players, subject to 
their imperfect local perception of the pitch, 
other players, and the ball.  The great 
contribution made by RoboCup is that all 
participants must share their research findings, 
and in recording the many simulation games 
that have been played.   
 
This is the database used for the research 
outlined in this paper.  In the simplest case, the 
record for a single game is six thousand sets of 
twenty-three x-y co-ordinates, giving the 
positions of the twenty-two players and the 
ball.  Each set corresponds to one tenth of a 
second, with games running for two halves of 
five minutes each.   

xr0, xr2, … xrm 

〈 xr0, xr2, … xrm ; r 〉 

r 

name

xr0, xr2, …      xrm 

nr

name

n 

Level 
 N 

Level 
N+1 

xr’0, xr’2, … xr’m 

nr’ 

name’ 

nr” 

name” 

Level 
 N 

Level 
N+1 

Level 
N+2 



 
 
 
 
 
 
 
 
 
 
 
 
(a) Player 8 passes the ball to player 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Player 6 passes the ball to player 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) Player 7 passes the ball to player 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(d) Player 8 passes the ball to player 7, but it is 
won by the nearby player 15 
 
Figure 3  Ball-passing relations 

There is a lot of other information available, 
but this simple subset is sufficient for our 
purposes here.  It is easy to write a computer 
program to display these data, and replay them 
as animations. 
 
Following our methodology, there is a well-
defined set of agents, namely twenty-two 
players and the ball.  These can be 
distinguished as belonging to three subsets, the 
red team (agents 0-10), the blue team 
(agents11-21), and the ball (agent 22). 
 
The methodology then suggests that we seek 
‘interesting’ relationships between the agents 
to form higher level constructs that will be 
useful in reasoning about the tactics and 
strategy of the game. 
 
What makes an ‘interesting’ relationship in 
this system?  Presumably a pass from one 
member of the team to another is interesting.  
Figure 3 shows a sequence of passes, from 
robot 8 to 6, from 6 to 7, from 7 to 8, and from 
8 back to 7, who then loses the ball to the 
opposition robot 15. 
 
In our terms, each pass can be represented as a 
relationship between two robots, for example,  
〈 robot-8, robot-6; rpass 〉, which can be 
simplified to 〈 8, 6 〉 .  The following table can 
be constructed from the data file for this game. 
 
 
 
   clock tick     robot acquiring ball      pass           

         42                         8 
         54                         6                   〈 8, 6 〉 
         66                         7                   〈 6, 7 〉 
         74                         8                   〈 7, 8 〉 
         81                         7                   〈 8, 7 〉 
         82                       15 
 
 
Table 1.  Possession and ball passing 
 
Apart from passes between two robots being 
‘interesting’, sequences of passes are also 
potentially interesting.  A passing sequence 
can have one of three outcomes: an opposing 
player wins the ball, the ball goes out of play 
and the opposition win control of the ball, or a 
goal is scored.  Each of these can be 
considered to be ‘interesting’ events.   
 
In previous AROB papers (see references) it 
has been argued that structural events like 
these can be important in devising tactics and 
strategies for team robot behaviour.  In 
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particular, sequences of passing events 
characterise human football, as defenders are 
‘drawn out of position’ by combinations of 
attacking players.  Thus in terms of 
representation, we have individual players at 
Level N, pairs of player related by passing at 
Level N+1, and sequences of passing pairs at 
level N+2, as shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4  A lattice hierarchy of ball-passing 
 
 
The game quoted in Figure 3 and Table 1 
above was the 2000 RoboCup Simulation 
Final, won 1-0 by Portugal (the ‘red team’).  A 
list of the numbers of passing events for the 
first half of this game is given below. 
 
 Run Sequence      Red        Blue  
 # passes               Team     Team 
 
   7                            1             0 
   5                            1             1 
   4                            2             0 
   3                            3             3 
   2                            5             5 
   1                           11            8 
 
 
Table 2.  Ball-Passing Sequence Events 
 
From the table it can be seen that the red team 
dominates the game in terms of having the 
most and the  longest passing sequences.  
Certainly when one watches this game, the red 
team seems to dominate.  As in human 
football, the ability to pass accurately is very 
important in robot soccer.  It is also important 
that the ball is passed to a player who is in a 
‘good position’ to do something with it. 
 
The leads to another canonical relationship 
between the soccer robots, the ‘closest to’ 

relation.  At any tick of the clock it is possible 
to compute the distances between the robots, 
and for each find that which on the other side 
is closest. 
 
 
 
 
 
 
 
 
 
Figure 5  The closest opposing robot relation 
 
 
This relationship is generally not symmetric.  
For example above, robots 8 and 16 are 
mutually closest to each other, but robot 12 is 
closest to robot 8, while robot 6 is closest to 
robot 12. 
 
In human soccer, defenders are sometimes 
given the task of marking another player.  This 
means that they have to stay close to that 
player.  This usually results in a symmetric 
‘closest to’ relationship between the two 
player, that can be very frustrating for the 
attacking player.  Unless the defender can be 
‘shaken off’, by interaction with other team 
members.  In other words, a player forced in to 
the structure  〈 me, marking opponent 〉 might 
seek to form a structure with 〈 ball, team-mate〉 
in order to break the me-marker relationships, 
as illustrated in Figure 6. 
 
 
 
 
 
(a) A is closely marked by B 
 
 
 
 
 
 
(b) B is drawn to C and the ball 
 
 
 
 
 
 
 
 
(c) A has shaken off B 
 
Figure 6  Shaking off a close marking 
opponent 
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4.  Pattern Recognition and the Lattice 
Hierarchy 
 
The previous section illustrated the formation 
of structures representing constructs such as 
‘passing’ or ‘being closest.  To find examples 
of these in a data set it is necessary to 
recognise the defining pattern.  This means: 
 
(i) appropriate sets of candidate elements have 
to be recognised for the relation  r 
(ii) the relationship r has to be tested between 
the elements of the candidate subsets 
 
For example, in recognising ‘closest to’ 
structures, it is necessary to generate all the 
pairs (A,B) where A belongs to one team and 
B belongs to the other.  Then it is necessary to 
test to see if A is closest to B.  Although this 
appears to be a binary relation, it is more than 
this.  To decide the closest opponent to A 
requires that all the opponent pairs are formed 
and the emergent property of distance(A,B) be 
calculated.  The particular 〈 A, B; rclosest 〉 is 
therefore recognised by inspecting the whole 
set of pairs, (A,B).  Thus  〈 A, B; rclosest 〉 is 
higher in the lattice hierarchy than the pair  〈A, 
B〉; where A is a red robot and B is blue.  
 
In terms of implementation, (i) usually 
involves forming lists, where each element can 
be tested independently of the others.  It just 
has to be tested to see if it has the required 
properties.  On the other hand, (ii) can be 
much more demanding, since it may require 
that relationships between all the elements be 
tested simultaneously.  This may involve 
complicated functions to build constructs and 
test them. 
 
One of the great objectives in building 
intelligent agents is to have agents that can 
structure the universe for themselves, by 
abstracting their own constructs.  Although 
there are combinatorially many subsets, 
generating testing any given subset is not 
always a computationally demanding task, 
especially when notions of sampling are used.  
By contrast, the possibility of generating and 
testing ‘useful’ relationships is much more 
onerous. 
 
In the first instance we are analysing the 
RoboCup data using human-inspired 
constructs such as the pass-sequences and 
closest-opponent as discussed above.  
However, the data lend themselves to more 
open-ended experiments in automatic construct 
generation.  In our terms, means generating the 
lattice hierarchy and generating a vocabulary 

to name it structures the various emergent 
levels.  It also means generating automatic 
pattern recognisers to test elements and 
relationships. 
 
Conclusions 
 
The lattice hierarchy is, arguably, one of the 
simplest structures available for representing 
complex systems with hierarchical 
vocabularies.   To use this symbolic 
representation it is necessary to have pattern 
recognisers between the levels, able to 
determine higher level structures. Hierarchical 
aggregation through relatively simple 
substructures is likely to be computationally 
the most tractable.  Ultimately, synthetic 
systems must abstract their own constructs and 
vocabularies.  We believe that in all cases, the 
lattice hierarchy will implicitly or explicitly be 
used. 
 
These ideas generalise to other complex 
system, including the social systems 
mentioned in Section 1.  Although robot 
soccer, even in its simulated form, is difficult 
to control successfully, it is much simpler and 
better behaved than many human systems.  For 
this reason we think it is an appropriate 
laboratory subject for understanding better the 
nature and use of lattice hierarchies. 
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