16,702 research outputs found

    Covariate conscious approach for Gait recognition based upon Zernike moment invariants

    Full text link
    Gait recognition i.e. identification of an individual from his/her walking pattern is an emerging field. While existing gait recognition techniques perform satisfactorily in normal walking conditions, there performance tend to suffer drastically with variations in clothing and carrying conditions. In this work, we propose a novel covariate cognizant framework to deal with the presence of such covariates. We describe gait motion by forming a single 2D spatio-temporal template from video sequence, called Average Energy Silhouette image (AESI). Zernike moment invariants (ZMIs) are then computed to screen the parts of AESI infected with covariates. Following this, features are extracted from Spatial Distribution of Oriented Gradients (SDOGs) and novel Mean of Directional Pixels (MDPs) methods. The obtained features are fused together to form the final well-endowed feature set. Experimental evaluation of the proposed framework on three publicly available datasets i.e. CASIA dataset B, OU-ISIR Treadmill dataset B and USF Human-ID challenge dataset with recently published gait recognition approaches, prove its superior performance.Comment: 11 page

    M\"obius Invariants of Shapes and Images

    Full text link
    Identifying when different images are of the same object despite changes caused by imaging technologies, or processes such as growth, has many applications in fields such as computer vision and biological image analysis. One approach to this problem is to identify the group of possible transformations of the object and to find invariants to the action of that group, meaning that the object has the same values of the invariants despite the action of the group. In this paper we study the invariants of planar shapes and images under the M\"obius group PSL(2,C)\mathrm{PSL}(2,\mathbb{C}), which arises in the conformal camera model of vision and may also correspond to neurological aspects of vision, such as grouping of lines and circles. We survey properties of invariants that are important in applications, and the known M\"obius invariants, and then develop an algorithm by which shapes can be recognised that is M\"obius- and reparametrization-invariant, numerically stable, and robust to noise. We demonstrate the efficacy of this new invariant approach on sets of curves, and then develop a M\"obius-invariant signature of grey-scale images

    Efficient contour-based shape representation and matching

    Get PDF
    This paper presents an efficient method for calculating the similarity between 2D closed shape contours. The proposed algorithm is invariant to translation, scale change and rotation. It can be used for database retrieval or for detecting regions with a particular shape in video sequences. The proposed algorithm is suitable for real-time applications. In the first stage of the algorithm, an ordered sequence of contour points approximating the shapes is extracted from the input binary images. The contours are translation and scale-size normalized, and small sets of the most likely starting points for both shapes are extracted. In the second stage, the starting points from both shapes are assigned into pairs and rotation alignment is performed. The dissimilarity measure is based on the geometrical distances between corresponding contour points. A fast sub-optimal method for solving the correspondence problem between contour points from two shapes is proposed. The dissimilarity measure is calculated for each pair of starting points. The lowest dissimilarity is taken as the final dissimilarity measure between two shapes. Three different experiments are carried out using the proposed approach: letter recognition using a web camera, our own simulation of Part B of the MPEG-7 core experiment “CE-Shape1” and detection of characters in cartoon video sequences. Results indicate that the proposed dissimilarity measure is aligned with human intuition
    corecore