2,406 research outputs found

    Efficient Truss Maintenance in Evolving Networks

    Full text link
    Truss was proposed to study social network data represented by graphs. A k-truss of a graph is a cohesive subgraph, in which each edge is contained in at least k-2 triangles within the subgraph. While truss has been demonstrated as superior to model the close relationship in social networks and efficient algorithms for finding trusses have been extensively studied, very little attention has been paid to truss maintenance. However, most social networks are evolving networks. It may be infeasible to recompute trusses from scratch from time to time in order to find the up-to-date kk-trusses in the evolving networks. In this paper, we discuss how to maintain trusses in a graph with dynamic updates. We first discuss a set of properties on maintaining trusses, then propose algorithms on maintaining trusses on edge deletions and insertions, finally, we discuss truss index maintenance. We test the proposed techniques on real datasets. The experiment results show the promise of our work

    Weighted network modules

    Get PDF
    The inclusion of link weights into the analysis of network properties allows a deeper insight into the (often overlapping) modular structure of real-world webs. We introduce a clustering algorithm (CPMw, Clique Percolation Method with weights) for weighted networks based on the concept of percolating k-cliques with high enough intensity. The algorithm allows overlaps between the modules. First, we give detailed analytical and numerical results about the critical point of weighted k-clique percolation on (weighted) Erdos-Renyi graphs. Then, for a scientist collaboration web and a stock correlation graph we compute three-link weight correlations and with the CPMw the weighted modules. After reshuffling link weights in both networks and computing the same quantities for the randomised control graphs as well, we show that groups of 3 or more strong links prefer to cluster together in both original graphs.Comment: 19 pages, 7 figure

    Practical and Efficient Split Decomposition via Graph-Labelled Trees

    Full text link
    Split decomposition of graphs was introduced by Cunningham (under the name join decomposition) as a generalization of the modular decomposition. This paper undertakes an investigation into the algorithmic properties of split decomposition. We do so in the context of graph-labelled trees (GLTs), a new combinatorial object designed to simplify its consideration. GLTs are used to derive an incremental characterization of split decomposition, with a simple combinatorial description, and to explore its properties with respect to Lexicographic Breadth-First Search (LBFS). Applying the incremental characterization to an LBFS ordering results in a split decomposition algorithm that runs in time O(n+m)α(n+m)O(n+m)\alpha(n+m), where α\alpha is the inverse Ackermann function, whose value is smaller than 4 for any practical graph. Compared to Dahlhaus' linear-time split decomposition algorithm [Dahlhaus'00], which does not rely on an incremental construction, our algorithm is just as fast in all but the asymptotic sense and full implementation details are given in this paper. Also, our algorithm extends to circle graph recognition, whereas no such extension is known for Dahlhaus' algorithm. The companion paper [Gioan et al.] uses our algorithm to derive the first sub-quadratic circle graph recognition algorithm

    Topology of random clique complexes

    Get PDF
    In a seminal paper, Erdos and Renyi identified the threshold for connectivity of the random graph G(n,p). In particular, they showed that if p >> log(n)/n then G(n,p) is almost always connected, and if p << log(n)/n then G(n,p) is almost always disconnected, as n goes to infinity. The clique complex X(H) of a graph H is the simplicial complex with all complete subgraphs of H as its faces. In contrast to the zeroth homology group of X(H), which measures the number of connected components of H, the higher dimensional homology groups of X(H) do not correspond to monotone graph properties. There are nevertheless higher dimensional analogues of the Erdos-Renyi Theorem. We study here the higher homology groups of X(G(n,p)). For k > 0 we show the following. If p = n^alpha, with alpha - 1/(2k+1), then the kth homology group of X(G(n,p)) is almost always vanishing, and if -1/k < alpha < -1/(k+1), then it is almost always nonvanishing. We also give estimates for the expected rank of homology, and exhibit explicit nontrivial classes in the nonvanishing regime. These estimates suggest that almost all d-dimensional clique complexes have only one nonvanishing dimension of homology, and we cannot rule out the possibility that they are homotopy equivalent to wedges of spheres.Comment: 23 pages; final version, to appear in Discrete Mathematics. At suggestion of anonymous referee, a section briefly summarizing the topological prerequisites has been added to make the article accessible to a wider audienc
    corecore