6,089 research outputs found

    The counting complexity of group-definable languages

    Get PDF
    AbstractA group family is a countable family B={Bn}n>0 of finite black-box groups, i.e., the elements of each group Bn are uniquely encoded as strings of uniform length (polynomial in n) and for each Bn the group operations are computable in time polynomial in n. In this paper we study the complexity of NP sets A which has the following property: the set of solutions for every x∈A is a subgroup (or is the right coset of a subgroup) of a group Bi(|x|) from a given group family B, where i is a polynomial. Such an NP set A is said to be defined over the group family B.Decision problems like Graph Automorphism, Graph Isomorphism, Group Intersection, Coset Intersection, and Group Factorization for permutation groups give natural examples of such NP sets defined over the group family of all permutation groups. We show that any such NP set defined over permutation groups is low for PP and C=P.As one of our main results we prove that NP sets defined over abelian black-box groups are low for PP. The proof of this result is based on the decomposition theorem for finite abelian groups. As an interesting consequence of this result we obtain new lowness results: Membership Testing, Group Intersection, Group Factorization, and some other problems for abelian black-box groups are low for PP and C=P.As regards the corresponding counting problem for NP sets over any group family of arbitrary black-box groups, we prove that exact counting of number of solutions is in FPAM. Consequently, none of these counting problems can be #P-complete unless PH collapses

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    One Quantifier Alternation in First-Order Logic with Modular Predicates

    Get PDF
    Adding modular predicates yields a generalization of first-order logic FO over words. The expressive power of FO[<,MOD] with order comparison x<yx<y and predicates for x≡imod  nx \equiv i \mod n has been investigated by Barrington, Compton, Straubing and Therien. The study of FO[<,MOD]-fragments was initiated by Chaubard, Pin and Straubing. More recently, Dartois and Paperman showed that definability in the two-variable fragment FO2[<,MOD] is decidable. In this paper we continue this line of work. We give an effective algebraic characterization of the word languages in Sigma2[<,MOD]. The fragment Sigma2 consists of first-order formulas in prenex normal form with two blocks of quantifiers starting with an existential block. In addition we show that Delta2[<,MOD], the largest subclass of Sigma2[<,MOD] which is closed under negation, has the same expressive power as two-variable logic FO2[<,MOD]. This generalizes the result FO2[<] = Delta2[<] of Therien and Wilke to modular predicates. As a byproduct, we obtain another decidable characterization of FO2[<,MOD]

    On Second-Order Monadic Monoidal and Groupoidal Quantifiers

    Get PDF
    We study logics defined in terms of second-order monadic monoidal and groupoidal quantifiers. These are generalized quantifiers defined by monoid and groupoid word-problems, equivalently, by regular and context-free languages. We give a computational classification of the expressive power of these logics over strings with varying built-in predicates. In particular, we show that ATIME(n) can be logically characterized in terms of second-order monadic monoidal quantifiers
    • …
    corecore