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Abstract

A group family is a countable family B= {Bn}n¿0 of �nite black-box groups, i.e., the ele-
ments of each group Bn are uniquely encoded as strings of uniform length (polynomial in n)
and for each Bn the group operations are computable in time polynomial in n. In this paper we
study the complexity of NP sets A which has the following property: the set of solutions for
every x ∈ A is a subgroup (or is the right coset of a subgroup) of a group Bi(|x|) from a given
group family B, where i is a polynomial. Such an NP set A is said to be de�ned over the group
family B.
Decision problems like Graph Automorphism, Graph Isomorphism, Group Intersection, Coset

Intersection, and Group Factorization for permutation groups give natural examples of such NP
sets de�ned over the group family of all permutation groups. We show that any such NP set
de�ned over permutation groups is low for PP and C=P.
As one of our main results we prove that NP sets de�ned over abelian black-box groups are

low for PP. The proof of this result is based on the decomposition theorem for �nite abelian
groups. As an interesting consequence of this result we obtain new lowness results: Membership
Testing, Group Intersection, Group Factorization, and some other problems for abelian black-box
groups are low for PP and C=P.
As regards the corresponding counting problem for NP sets over any group family of arbitrary

black-box groups, we prove that exact counting of number of solutions is in FPAM. Consequently,
none of these counting problems can be #P-complete unless PH collapses. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Graph Isomorphism 1 (GI) is an algorithmic problem of intriguing complexity. To
date no polynomial-time algorithm has been found for it. On the other hand, there

∗ Corresponding author. E-mail: arvind,vinod@imsc.ernet.in.
1 The problem of deciding whether two given labeled graphs are isomorphic.
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is strong evidence that GI is not NP-complete: in [7] it was shown that GI is in
NP ∩ co-AM, which implies that GI cannot be NP-complete unless the polynomial
hierarchy collapses to �p

2 [7, 17]. More recently, it was shown in [15] that GI is low
for PP. In other words, GI is powerless as oracle for PP computations (where PP is
the language class corresponding to #P).
Similar results also hold for several group-theoretic problems. In [4] it is shown

that Group Intersection and the Coset Intersection problems for permutation groups are
in NP ∩ co-AM. In [15] it is shown for permutation groups that the Group Intersec-
tion problem, Group Factorization, Coset Intersection and Double Coset Membership
(formal de�nitions are given later) are all low for PP.
The underlying group-theoretic structure of these problems plays a crucial role in the

proofs of the above-mentioned complexity results. For example, in the case of Graph
Isomorphism the proofs of the results rely crucially on the following: (a) the set of
automorphisms of a graph on n vertices is a subgroup of Sn, the symmetric group on
n elements, and (b) if G1 and G2 are two isomorphic graphs and Aut(G1) denotes the
automorphism group of G1 then the set of all isomorphisms from G1 to G2 is a right
coset Aut(G1) of Aut(G1), where  is an isomorphism from G1 to G2. Similarly, for
the group-theoretic problems mentioned above, the derivation of the lowness results is
based on the inherent group-theoretic structure of the problems.
The object of our study is to look for similarity in the inherent structure of the

problems mentioned above, in order to explain why they have very similar structural
complexity. Intuitively, it appears unlikely that the instances of an NP-complete lan-
guage can have solutions sets that enjoy a nice algebraic structure (which the above
problems have). This motivates us to study the following class of NP languages A
de�ned as follows: for each x ∈ A, the set of witnesses for x, w.r.t. some NP machine,
encodes a right coset of some �nite group. In this paper we mainly investigate the
lowness of these languages for the class PP.
Before we explain our results, we give some de�nitions. We �rst de�ne the notion

of group families, which were introduced in a somewhat di�erent context in [2].

De�nition 1.1 (Babai [2]). A group family is a countable sequence B = {Bm}m¿1
of �nite groups Bm, such that there are polynomials p and q satisfying the following
conditions. For each m¿1, elements of Bm are uniquely encoded as strings in �p(m).
The group operations (inverse, product and testing for identity) of Bm can be performed
in time bounded by q(m), for every m¿1. The order of Bm is computable in time
bounded by q(m), for each m. We refer to the groups Bm of a group family and their
subgroups as black-box groups. 2

We give two examples. Let Sn denote the permutation group on n elements. Then,
SYM = {Sn}n¿1 is a group family of all permutation groups Sn. Let GLn(q) denote the

2 Note that black-box groups we de�ne above are a restricted version of black-box groups introduced
in [2].The black-box group de�ned in [2] is technically more general. There the black-box group is de�ned
so as to incorporate factor groups.
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group of all n× n invertible matrices over the �nite �eld Fq of size q. The collection
GL(q) = {GLn(q)}n¿1 is a group family.
Next, we make precise our de�nition of the class of NP languages, the solution sets

of whose instances form right cosets of �nite groups.
Let A be an NP language de�ned by a polynomial-time computable relation R. For

any x ∈ A let SolR(x) denote the set of witnesses for x w.r.t R.

De�nition 1.2. An NP language A⊆�∗ is said to be group-de�nable if there is a
group family B = {Bm}m¿1 and a polynomial i, and A is de�ned by a polynomial-
time computable relation R, such that for every x ∈ A, SolR(x) is a right coset of
some subgroup of Bi(|x|). More speci�cally, we say that A is group-de�nable over B
via relation R.

It is easy to see from the de�nition that GI and problems Group Factorization, Coset
Intersection and Double Coset membership (de�nitions of these problems are given in
Section 4.3) for permutation groups are group-de�nable over SYM. In [15], it is shown
that these problems are in the class LWPP and hence low for PP. However, [15] give
di�erent lowness proofs for each of the above-mentioned problems. The next theorem
captures these PP-lowness results in a single statement. We omit the proof because it
can be proved exactly on same lines as [15].

Theorem 1.3. Every language that is group-de�nable over SYM is in LWPP and
hence low for PP.

This result motivates us to explore the complexity of group-de�nable languages over
arbitrary group families.
In this paper, we look at the complexity of various subclasses of group-de�nable

languages. We show results which essentially indicate that group-de�nable languages
are unlikely to be NP-complete. More precisely, we show that these subclasses of
group-de�nable languages are low for PP. The following are the subclasses of group-
de�nable languages that we are interested in.

De�nition 1.4. Let A⊆�∗ be a group-de�nable language over B via relation R.
1. For a �xed prime p, A is said to be p-group-de�nable if for every x ∈ A, SolR(x)
is a right coset of a p-group.

2. A is said to be prime-power group-de�nable, if for every x ∈ A, SolR(x) is a right
coset of some p-subgroup of Bi(|x|) where p is a prime.

3. A is said to be abelian group-de�nable if for every x ∈ A, SolR(x) is a right coset
of some abelian subgroup of Bi(|x|)

We show that languages that are p-group-de�nable, prime-power group-de�nable,
and abelian group-de�nable are all low for PP. The proofs of lowness of p-group-
de�nable and prime-power group-de�nable for PP are relatively easy. The proof that
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abelian group-de�nable languages are low for PP requires the structure theorem of
abelian groups. This result about abelian group-de�nable languages yields as corollaries
the PP-lowness results of [1] for various speci�c group-theoretic problems.
We also show, in Section 5, that the counting problems corresponding to group-

de�nable languages are in FPAM, and hence unlikely to be #P-complete unless PH
collapses to FPAM. All these results are in support of our intuition that the solution sets
of the instances of NP-complete languages are unlikely to have nice algebraic structure.
The layout of the paper is as follows. In Section 3 we prove that the group-de�nable

languages over prime-power groups are low for PP. In Section 4 we prove the main
structural theorem. This section is in three parts. The �rst subsection deals with devel-
oping a formula for counting the number of independent generator sets for an abelain
group, which we apply in the proof of the main theorem. The main theorem is proved
in Section 4.2. In Section 5, we prove upper bounds on the complexity of counting
problems corresponding to group-de�nable languages.

2. Notations and de�nitions

2.1. Complexity-theoretic preliminaries

We �x the �nite alphabet � = {0; 1}. For any �nite set X , |X | denotes the cardinality
of X . For an x ∈ �∗, |x| denotes the length of x. For any oracle A, the language L
in NP(A) if there is a relation R ∈ P(A) and a polynomial p such that x ∈ L i�
∃y ∈ �p(|x|) and 〈x; y〉 ∈ R. Corresponding to the relation R, let SolR(x) denote the set
{y ∈ �p(|x|) | 〈x; y〉 ∈ R}, for each x ∈ �∗.
Let Z denote the set of integers. A function f : �∗ → Z is gap-de�nable if there

is a polynomial-time nondeterministic (in short, NP) machine M such that, for each
x ∈ �∗, f(x) is the di�erence between the number of accepting paths (denoted by
accM (x)) and the number of rejecting paths (denoted by rejM (x)) of M on input x.
Let GapP [11] denote the class of gap-de�nable functions. For each NP machine M
let gapM denote the GapP function de�ned by it. The corresponding language class
PP is de�ned as follows: A language L is in PP if there is a GapP function f such
that: x ∈ L i� f(x)¿ 0.
The counting classes of interest in this paper are UP, FewP, SPP and LWPP de�ned

using GapP functions [11]. A language L is in UP if there is an NP machine M
accepting L such that M has at most one accepting path on any input. A language
L is in FewP if there is polynomial p and an NP machine M accepting L such that
M has at most p(|x|) accepting for any input. A language L is in SPP if there is an
f ∈ GapP such that: x ∈ L implies that f(x) = 1, and x 6∈ L implies that f(x) = 0.
A language L is in LWPP if there are functions f ∈ GapP and h ∈ FP such that:
x ∈ L implies that f(x) = h(0|x|), and x 6∈ L implies that f(x) = 0. It is easy to see
that UP⊆SPP⊆LWPP. An important result that we use frequently is that primality
checking is in UP [10].
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Let P(A);NP(A) and PP(A) denote the classes of languages obtained by the natural
relativization w.r.t. oracle A. A⊆�∗ is said to be low for PP if PP(A) = PP. In [11]
it is shown that every language in LWPP is low for PP.
Another complexity class which is of interest to us is the class AM introduced in

[2]. For this and other standard complexity theoretic de�nitions refer to [6].

2.2. Group-theoretic preliminaries

In this subsection, we give some basic group-theoretic de�nitions and formalize some
notation. Details can be found in textbooks [8, 13].

De�nition 2.1 (Burnside [8], Hall [13]). A group is a nonempty set G endowed with
a binary operation ∗ such that G is closed under ∗. The operation ∗ is associative.
There is an element e ∈ G, called the identity of G, such that x ∗ e = e ∗ x = x, for all
x ∈ G. For every x ∈ G there exists a unique x−1 ∈ G, called the inverse of x, such
that x ∗ x−1 = x−1 ∗ x = e.

When there is no ambiguity we do not explicitly specify the group operation and
denote the composition x ∗ y by xy. In this paper we deal with only �nite groups.
For any �nite groups G, |G| denotes the order of G. For an element g ∈ G, the

order of g (denoted o(g)) is the smallest positive integer such that go(g) = e, where e
is the identity of G. A subset H of G is called a subgroup of G (denoted H ¡ G) if
H is a group under the group operation of G.
A group G is abelian if ∀g1; g2;∈ G: g1g2 = g2g1. Let S be a subset of a group G.

The smallest subgroup of G containing S is called the group generated by S and is
denoted 〈S〉. A subset S of G is a generator set for G if G = 〈S〉. Observe that, if S
is a set of generators for G then G is abelian i� ∀g1; g2;∈ S : g1g2 = g2g1.
Let H be a subgroup of a group G. For g ∈ G the set {hg | h ∈ H} denoted by Hg

is a right coset of H in G. Similarly, the set gH = {gh | h ∈ H} is a left coset of H
in G.
A subgroup H of G is a normal subgroup of G if for all g ∈ G it holds that

Hg = gH . As a consequence it turns out that the set G=H = {Hg | g ∈ G} is a
group (the quotient group induced by H) under the binary operation · de�ned by
Hx · Hy = Hxy.
Let p be a prime. A p-group is a �nite group whose order is a power of p. Let G

be �nite groups such that |G| = pe1
1 p

e2
2 : : : per

r . A fundamental result in group theory,
due to Sylow states that for each i there is a subgroup of G of order pei

i . A subgroup
of G of order pei

i is referred to as a pi-Sylow subgroup of G.
Let (X; ∗) and (Y; :) be two groups. The direct product of the groups X and Y is

de�ned as the group (X ×Y; ◦), where X ×Y is the cartesian product of sets X and Y ,
and for (x1; y1); (x2; y2) ∈ X × Y their ◦ composition is de�ned as (x1; y1) ◦ (x2; y2) =
(x1 ∗ x2; y1:y2).
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3. Prime-power group-de�nable languages

In this section, we prove the PP-lowness of group-de�nable languages, where the
groups are a priori known to be p-groups for some prime p.
Using the simple fact that for any �xed prime p, the size of any p-subgroup of Bm

can take only polynomially (in m) many values, we next show that p-group-de�nable
language are in the class LWPP and hence low for PP.

Theorem 3.1. For any �xed prime p, every p-group-de�nable language is in LWPP
and hence low for PP.

Proof. Let L be p-group-de�nable for a prime p over the group family B = {Bm}m¿1,
via an NP machine M . We give an LWPP machine which accepts L.

DESCRIPTION OF MACHINE M ′(x)
1 Compute n = |Bi(|x|)|
2 Find the greatest integer � such that p� divides n
3 Produce a gap =

∏�
j=1 p

j −∏�
j=1(p

j − accM (x))

We claim that for x ∈ L the gap produced by M ′ is
∏�

j=1 p
j and if x 6∈ L, the gap

will be 0. Now, when x ∈ L, SolR(x) will be a right coset of some p-subgroup, say
G, of Bi(|x|). By Lagrange’s theorem, the order of G should be pk for some k6�.
Hence accM (x) = pk and

∏�
j=1(p

j − accM (x)) = 0. So the total gap =
∏�

j=1 p
j. If

x 6∈ L, accM (x) = 0 and hence total gap = 0. Since,
∏�

j=1 p
j depends only on |x| and

computable in polynomial time for a �xed prime p, it follows that, L ∈ LWPP.

Next, we prove that prime-power group-de�nable languages are low for PP. Al-
though, the proof is very similar to the proof of lowness of p-group-de�nable for PP,
we are unable to get membership in LWPP. This is because the gap of the �nal ma-
chine (de�ned below) depends on the prime factorization of |Bm| which is not known
to be polynomial time computable.
The next theorem gives us a su�cient condition for a language to be low for PP. We

use this theorem for proving lowness for PP of prime-power group-de�nable languages
and abelian group-de�nable (see Section 4) languages. We omit the proof of this
theorem which is exactly equal to the proof of that the class LWPP is low for PP
given in [11].

Theorem 3.2. Let L be a language such that there exists a GapP machine M and a
GapP function f : N → Z with the property: for all x ∈ L, gapM (x) = f(1|x|) and
for all x 6∈ L, gapM (x) = 0. Then L is low for PP.

Theorem 3.3. Every prime-power group-de�nable language is low for PP.
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Proof. For the proof, we make use of the fact that the number of primes that divide
|Bm| is polynomially bounded in m, and for any prime p dividing |Bm|, the order of
any p-group of Bm can take only polynomially many values.
Let L be prime-power group-de�nable over the group family B = {Bm}m¿1 via a

relation R. Let M be the NP machine corresponding to R. We give a machine M ′

which satis�es the hypothesis of Theorem 3.2.

DESCRIPTION OF MACHINE M ′(x)
1 Compute | Br(|x|) | = n
2 Guess k : 16k6 log n
3 for i ← 1 to k
4 do Guess integer pi ¿ pi−1 and UP certi�cate si of primality of pi

5 if pi not prime
6 then produce a gap=0
7 Guess index ei
8 if n 6= pe1

1 p
e2
2 : : : pek

k
9 then produce a gap=0
10 Produce a gap =

∏k
i=1[

∏ei
j=1 p

j
i −

∏ei
j=1(p

j
i − accM (x))]

In lines 1–9, M ′ computes the prime factorization of |Br(|x|)| = n in a UP way using
the algorithm in [10]. So, at the end of line 9, all the paths except one will produce a
gap=0. Now, using similar arguments as in the proof of the above theorem, we can
see that for x ∈ L the gap produced by M ′ is

∏k
i=1

∏ei
j=1 p

j
i and if x 6∈ L, the gap will

be 0. It is easy to see that on input 1|x|, computing the prime factorization of |Br(|x|)|
and hence

∏k
i=1

∏ei
j=1 p

j
i is in GapP. So by Theorem 3.2, PP-lowness follows.

4. Abelian group-de�nable languages

In this section, we prove the main theorem that abelian group-de�nable languages are
low for PP. Although we have de�ned the notion of abelian group-de�nable languages
in the introduction, here we give a de�nition for the relativized version of this notion,
since we have to use the relativized version of the main theorem for applying to speci�c
problems.

De�nition 4.1. A language A⊆�∗, is said to be abelian group-de�nable relative to an
oracle L⊆�∗, if there is a group family B and a polynomial i such that, A ∈ NP(L) is
de�ned by a relation R ∈ P(L), and for every x ∈ A the set SolR(x) is a right coset of
some abelian subgroup of Bi(|x|). If L = �, we say that A is abelian group-de�nable.

We �rst state some theorems from the theory of �nite abelian groups which are
essential in this section. The proofs of these theorems can be found in textbooks [8, 13].
The following representation theorem is a fundamental result.
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Theorem 4.2 (Burnside [8]). Let G be a �nite abelian group such that |G| =
pe1
1 p

e2
2 : : : per

r , where the pi’s are distinct primes. The group G can be expressed as
the direct product of its Sylow subgroups S(p1); S(p2); : : : ; S(pr) where |S(pi)| = pei

i

for 16i6r. Furthermore, for 16i6r, each Sylow subgroup S(pi) can be uniquely
expressed as the direct product of cyclic groups of orders pei1

i ; pei2
i ; : : : ; p

eisi
i such that

ei1¿ei2¿ · · ·¿eisi and
∑si

j=1 eij = ei. This decomposition of G is unique.

Let p be a prime and consider an abelian p-group G of order pe. The above theorem
implies that there is a unique sequence of natural numbers e1¿e2¿ · · ·¿em such that∑

16j6m ej = e and G can be expressed as a direct product of m cyclic groups of
respective orders pej , 16j6m. The sequence (e1; e2; : : : ; em) is called the type of the
p-group G. An element g ∈ G, g 6= e, is said to be independent of a set X of elements
of G, if 〈g〉 ∩ 〈X 〉 = 〈e〉. A generator set X of G is an independent generator set for
G if every g ∈ X is independent of X − {g}. Let H be a �nite abelian group such
that |G| = pe1

1 p
e2
2 : : : per

r , where the pi’s are distinct primes. Let Xi be an independent
generator set for the pi-Sylow group. Then

⋃r
i=1 Xi is an independent generator set

for H . As a consequence of Theorem 4.2, all �nite abelian groups have independent
generator sets.
For the proof of the main theorem, we need to know the number of independent

generator sets of an abelian group. In the next subsection, we derive a formula for
counting the number of independent generator sets of an abelian group.

4.1. Number of independent generator sets

In this subsection we derive a formula for counting the number of independent
generators of an abelian p-group, for prime p, of given type.
Let p be a prime. Let G be an abelian p-group of order pm. First we derive a

formula for number of elements of G of order p� for any 16�6m. Let G� = {g ∈
G : o(g)6p�}. Then G� is a subgroup of G. The following lemma gives an easy way
of computing the number of elements of order p� in G from the type (m1; m2; : : : ; ms)
of G.

Lemma 4.3 (Burnside [8]). Let G be a p-group of type (m1; m2; : : : ; ms). Let G� =
{g ∈ G | o(g)6p�} and |G�| be p�. Then � = k� +

∑s
i=k+1mi where k is such

that mk¿�¿mk+1 and the number of elements of G of order p� is |G�| − |G�−1|.

Now we state an easy result which allows us to adapt the above lemma for abelian
factor p-groups.

Lemma 4.4 (Burnside [8]). Let G be a p-group of type (m1; m2; : : : ; ms). Let g1;
g2; : : : ; gs be an independent set of generators for G with o(gi)=pmi , 16i6s. Let
G(i) be the subgroup of G generated by the set {g1; g2; : : : ; gi}. Then for every i,
16i6s, the factor group Hi = G=G(i) is of type (mi+1; mi+2; : : : ; ms), and there are
|Hi

mi+1
| − |Hi

mi+1−1| elements of order pmi+1 in Hi.
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Next we prove the crucial lemma which, along with the above two results, gives a
formula for counting the number of independent generator sets of an abelian p-group
from its type.

Lemma 4.5. Let G be a �nite abelian p-group of type (m1; m2; : : : ; ms). Let g1;
g2; : : : ; gs be an independent set of generators for G with o(gi)=pmi , 16i6s. Let
G(i) be the subgroup of G generated by the set {g1; g2; : : : ; gi}. Let Hi = G=G(i).
Then the number of independent generator sets K of G is given by K =

∏s
i=0(|Hi

mi+1
|−

|Hi
mi+1−1|)pimi+1 .

Proof. First, it follows from uniqueness part of fundamental theorem (Theorem 4.2)
that if {g1; g2; : : : ; gs} is an independent generator set then o(gi) = pmi for all 16j6r.
Suppose we already have an independent set {g1; g2; : : : ; gi} of elements such that
o(gj) = pmj for 16j6i. So, if we are able to get the number of elements of order
pmi+1 in G, which are independent to the set {g1; g2; : : : ; gi}, then by induction we can
get the number of independent generator sets for G. Hence we will concentrate on
counting the number of elements of order pmi+1 in G, which are independent to the set
{g1; g2; : : : ; gi},
From Lemma 4.4, it follows that there are |Hi

mi+1
|−|Hi

mi+1−1| elements (cosets of G(i)
in G) of order pmi+1 in Hi. So it follows that if we could count the number of elements
of G of order pmi+1 in any right coset G(i)g of order pmi+1 in G, we can calculate the
number of elements of G of order pmi+1 independent to the set {g1; g2; : : : ; gi}.
Consider a right coset G(i)g of order pmi+1 . It follows from the proof of Theorem 4.2

(described in [8]), that any right coset G(i)g of order pmi+1 has an element gi+1 of
order pmi+1 in G independent of {g1; g2; : : : ; gi}. So, G(i)g = G(i)gi+1 and we want the
number of elements h ∈ G(i) satisfying the equation: (hgi+1)p

mi+1 = e. Notice that, since
gi+1 is independent of G(i), (hgi+1)j cannot be equal to identity for j ¡ pmi+1 . Since
{g1; g2; : : : ; gi} are independent, for any h ∈ G(i) there exists a unique set of indices
l1; : : : ; li; lj ¡ pmj for 16j6i such that h = gl1

1 : : : gli
i . So, since (gi+1)p

mi+1 = e, the
number of elements h ∈ G(i) satisfying the condition (hgi+1)p

mi+1 = e is the same as the
number of tuples (l1; : : : ; li); lj ¡ pmj for 16j6i such that gljpmi+1

j = e for 16j6i.
Since the order of gj is pmj , the above condition holds for all those lj such that pmj

divides ljpmi+1 . So for each j; 16j6i, there are pmi+1 possibilities. This implies that

the total number of tuples (l1; : : : ; li); satisfying the condition gljpmi+1

j = e for 16j6i
is pimi+1 .
So the number of elements in G of order pmi+1 independent of the set {g1; g2; : : : ; gi}

are (|Hi
mi+1
| − |Hi

mi+1−1|)pimi+1 . Hence the lemma follows from induction.

Finally, we extend the above lemma to get the number of independent generators
for an arbitrary abelian group. The proof follows from the fact that each independent
generator set for an abelian group can be written as a union of an independent generator
set for its p-Sylow groups.
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Lemma 4.6. Let G be a �nite abelian group of order n = pe1
1 p

e2
2 : : : pek

k . Let Ki be the
number of independent generators of the pi-Sylow subgroup of G. Then the number
of independent generators K for G is given by K =

∏k
i=1 Ki

4.2. Main theorem

In this subsection, we prove that abelian group-de�nable languages are low for the
counting class PP. We introduce some notations and state a weaker version of a theorem
from [15] which we use for the proof of the main theorem.
Let M be an oracle NP machine and let A ∈ NP accepted by an NP machine N and

let f ∈ FP. We say that MA make 1-guarded queries if on any input x, MA only asks
queries y such that N on input y has either 0 or 1 accepting path.

Theorem 4.7 (Kobler et al. [15]). Let M be an oracle NP machine. If A ∈ NP such
that for all inputs MA makes only 1-guarded queries to A then the function h(x) =
gapMA(x) is in GapP.

Theorem 4.8. Every abelian group-de�nable language is low for PP.

Proof. Let B = {Bl}l¿0 be a group family. Let L be an abelia n-group-de�nable
language over B, via the relation R, witnessed by the NP machine M , such that for
x ∈ L, SolR(x) is a right coset of an abelian subgroup, say Gx, of Br(|x|), where r is
some polynomial. Let |Br(|x|)| = n whose prime factorization is pe1

1 p
e2
2 : : : pek

k . Let G
(i)

be the pi-Sylow subgroup of Gx. We �rst give an intuitive sketch of the proof and
then describe the details.
In order to prove PP-lowness of L, we design a machine N which has the property

that for all x ∈ L, N produces a gap which depends only on |x|, which can also be
computed in GapP; and for x 6∈ L, N produces a zero gap. Then PP-lowness of L
follows from Theorem 3.2. For this, we crucially use the following fact. Since, for all
x ∈ L, |SolR(x)| = |Gx| divides |Br(|x|)| and number of distinct prime factors of |Br(|x|)|
is small (polynomially in |x|), it follows that the number of prime factors in |SolR(x)|
for all x of same length collected together, is small.
Consider a nondeterministic machine NA that starts its computation by simulating the

NP machine that accepts L. If NA could somehow compute the number |SolR(x)| = |Gx|
on each of its accepting paths, then it has to just branch into an appropriate number
of accepting paths, so that the total number of accepting paths only depends on |x|.
Thus the crux of the proof is to design a suitable method for computing |Gx|, and

build this method into NA. Observe that by Theorem 4.2 |Gx| can be computed if the
type of each Sylow subgroup of Gx is known. Therefore, NA guesses the types of each
of the Sylow subgroups of Gx. In order to authenticate the guessed types, NA further
guesses an independent set of generators for each of the Sylow subgroups of Gx and
computes the orders of each generator. Here, Lemma 4.6 which gives us a formula for
the number of independent generator sets of an abelian p-group of given type comes
in handy. Next, NA is left with the task of verifying that each of the guessed generator
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sets are indeed independent. In order to do this veri�cation NA needs to use an oracle
I ( which is an NP language formally de�ned below). A delicate part of the design
of NA is that the queries it makes to I are ‘guarded’ in the following sense: for each
query q to I made by NA, it holds that the NP machine that accepts I has at most
one accepting path. This ‘guarded access’ to I enables us to eventually do away with
the oracle I. This is accomplished by suitably applying Theorem 4.7.
Call a computation path of NA good if along that path NA guesses independent

generator sets for each of the Sylow subgroups of Gx. One problem still left with NA

is that there may be computation paths along which one or more guessed independent
generator set(s) generates only a proper subgroup of the corresponding Sylow subgroup
of Gx. Call such paths as bad paths.
So, NA as an oracle NP machine, actually accepts only the language de�ned as

follows: A = {〈x; w; pi; m〉 | w ∈ SolR(x); the pi-Sylow subgroup G(i) of Gx has order
divisible by pm

i }.
In order to get rid of the bad paths of NA we design another machine N which

simulates NA in a suitable manner so that for each bad path of NA the machine N
produces a zero gap, and N produces a �xed nonzero gap for each good path of NA.
We shall now turn to the formal details of the proof. First we shall de�ne a language

in I ∈ NP which can be used to test independence of elements in an abelian group.
De�ne I = {〈0m; S; g〉|S ⊆Bm; g ∈ Bm; 〈S〉 is abelian and g ∈ S}

Claim 4.8.1. There exists an NP-machine M which accepts I. Moreover if S is an
independent set of elements, then for those inputs 〈0m; S; g〉 ∈ I, M will have a unique
accepting path.

Proof. Firstly, we note that if the prime factorization pe1
1 p

e2
2 : : : pek

k of |Bm| is given,
then o(g) for g ∈ Bm, can be computed in time polynomial in m. To see this, observe
that o(g) can be expressed as pd1

1 pd2
2 : : : pdr

r , each di6ei. Clearly di is the smallest j
such that (gn=pei

i )p
j
i = e. Since 16di6ei and ei is bounded by a polynomial in m, for

every i, each di can be computed in time bounded by a polynomial in m.
The NP-machine M after verifying that 〈S〉 is abelian, computes |Bm|, guesses its

prime factorization in a UP way [10], compute o(h) for all h ∈ S, guesses indices
16lh6o(h) and veri�es that g =

∏
h∈S h

lh . Now, if S is independent, then there will
be a unique guess for lh for all h ∈ S. So in this case M will have a unique accepting
path.

Next, we de�ne a language A = {〈x; w; pi; m〉 | w ∈ SolR(x); the pi-Sylow subgroup
G(i) of Gx has order divisible by pm

i }.
For an integer n, de�ne positive integers Li(n) = pe2i +ei

i
∏
16�6ei(p

�
i−1), for 16i6k,

where |Br(n)| = pe1
1 p

e2
2 : : : pek

k .

Claim 4.8.2. There is an oracle NP chine NI
A that makes 1-guarded queries to I and

accepts A. Furthermore, for inputs 〈x; w; pi; m〉 in A, where pm
i = |G(i)|, NI

A has exactly
Li(|x|) accepting paths.
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Proof. We will de�ne an oracle NP machine NI
A that makes 1-guarded queries to I

and accepts A with the desired properties.
The idea is that NI

A on input 〈x; w; pi; m〉, guesses a type 〈m1;i ; m2;i ; : : : ; mk(i);i〉 and
veri�es that m =

∑k(i)
j=1 mj;i. It then veri�es that this is the type of a subgroup of G(i)

by making suitable guarded queries to I,

DESCRIPTION OF MACHINE NI
A (x; w; pi; m)

1 if w 6∈ SolR(x)
2 then Reject
3 Guess the UP certi�cate for the primality of pi and check that pi is prime
4 if pi not prime
5 then Reject
6 Compute the following
7 (a) n = |Br(|x|)|
8 (b) Index ei which is the highest pi power that divides n
9 (c) Li(r(|x|))
10 (*All the above quantities can be computed in time polynomial in |x| *)
11 Guess k: 16k6ei.
12 Guess the type (m1; m2; : : : ; mk) where 16m1; m2; : : : ; mk6ei
13 if (m 6=∑k

j=1 mj) or (mj ¿ mi for j ¿ i)
14 then Reject
15 Using the type (m1; m2; : : : ; mk) Compute Ki as in Lemmas 4.6 and 4.3
16 Guess distinct strings g1; : : : ; gk ∈ �r(|x|)

17 if (o(gj) 6= pmj
i )or(gjw 6∈ SolR(x))

18 then Reject
19 j ← 2
20 while 〈0r(|x|); {g1; : : : ; gj−1}; gj〉 6∈ I and j6k do j ← j + 1
21 if j = k + 1
22 then Branch into Li(|x|)=Ki paths and Accept
23 else Reject

It is easy to see that NI
A accepts A. To see that the rest of the claim is correct, we �rst

note that if the while-loop in lines 20 and 21 is exited with j = k +1, then the while-
loop condition guarantees that the guessed elements g1; g2; : : : ; gk are independent. Lines
17 and 18 guarantees that each gj has order pmj and are elements of G(i), 16j6k.
Also lines 13 and 14 ensures that m =

∑k
j=1mj. Therefore 〈g1; g2; : : : ; gk〉 is a subgroup

of G(i) of order pm
i .

Let us consider the case when pm
i = |G(i)|. If the while-loop in line 20 is exited with

j = k + 1, then it holds that {g1; g2; : : : ; gk} is a generator set for G(i) and, moreover,
lines 21–23 give rise to Li(|x|)=Ki accepting paths. Furthermore, Theorem 4.2 guarantees
that there is only a unique guess of the type m1¿m2; · · ·¿mk that can lead to accepting
paths. For that unique guess Ki is correctly computed in line 15. Also, from Lemma 4.6,
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we know that G(i) has Ki generator sets. Thus NI
A has Ki·Li(|x|)=Ki = Li(|x|) accepting

paths on input 〈x; w; pi; m〉 when pm
i is |G(i)|.

To see that the machine NI
A is making 1-guarded queries to I, notice that NI

A is
querying I only in line-20. Suppose at the jth iteration of the while-loop, for a query
〈0r(|x|); {g1; : : : ; gj−1}; gj〉 to I, the machine M described in claim 4.8.1 has more than
one accepting path. This means that the set {g1; : : : ; gj−1} is not independent. That is
there exists gi; i ¡ j such that gi ∈ 〈g1; : : : ; gi−1〉. This is a contradiction to the fact
that the machine has not exited the while-loop at the ith iteration. Hence the queries
made by NI

A to I are 1-guarded.

Now, using the Theorem 4.7, we can replace the oracle machine NI
A with a GapP

machine N ′
A, which produces the same gap as the number of accepting paths of NI

A .
The following claim is a direct application of Theorem 4.2 to Claim 4.2.

Claim 4.8.3. There is a GapP machine N ′
A de�ning a GapP function h such that the

language A is {〈x; w; pi; m〉 | h(〈x; w; pi; m〉) 6= 0}. Furthermore, for inputs 〈x; w; pi; m〉
in A, if pm

i = |G(i)| then h(〈x; w; pi; m〉) = Li(|x|).

In the remaining part of the proof, we design a GapP machine N which on input
x ∈ �∗, uses N ′

A and has the following accepting behavior. For all x ∈ L, N will have
a gap = n

∏k
i=1 L

ei
i (|x|) which depends only on |x| and for all x 6∈ L, N will produce

a 0 gap. Once existence of such a machine for L is being proved, the PP-lowness of
L follows.

Claim 4.8.4. There exists a GapP machine N which on input x ∈ �∗ has the following
accepting behavior. For all x ∈ L, N will produce a gap = n

∏k
i=1 L

ei
i (|x|) and for all

x 6∈ L, N will produce a gap = 0.

We shall �rst give the description of machine N . Then we shall prove that N has
the above mentioned accepting behavior.

DESCRIPTION OF N (x)
1 Compute | Br(|x|) | = n
2 Guess k : 16k6 log n
3 for i ← 1 to k
4 do Guess integer pi ¿ pi−1 and UP certi�cate si of primality of pi

5 if pi not prime
6 then produce a gap=0
7 Guess index ei
8 if n 6= pe1

1 p
e2
2 : : : pek

k
9 then produce a gap=0
10 Guess w ∈ �r(|x|)

11 if w 6∈ SolR(x)
12 then produce a gap=0
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13 for 1← 1 to k
14 do Guess li : 16li6ei
15 Compute � =

∏k
i=1 p

li
i

16 Branch into n=� paths and produce a gap of
17

∏k
i=1[h(〈x; w; pi; li〉) · Lli−1

i (x) ·∏ei
m=li+1(Li(x)− h(〈x; w; pi; m〉))]

From the de�nition of the group family, it follows that the computation at line 1
is polynomial time. Since, checking whether an integer is prime or not is in the class
UP [10], lines 2–10 of the machine ensures that after the computation of line 10, N
will have the unique prime factorization of n on exactly one of its path and all other
paths will produce a gap=0. Now, we shall see the accepting behavior of N on this
path.
Recall that h is the GapP function computed by N ′

A de�ned in Claim 4.2. Consider
the gap

∏k
i=1[h(〈x; w; pi; li〉) · Lli−1

i (x) ·∏ei
m=li+1(Li(x)− h(〈x; w; pi; m〉))] that machine

N produces in lines 9 and 10. Let us denote the gap by X , for brevity. Consider the
case when, for each 16i6k, the value li guessed in lines 6 and 7 is mi, where pmi

i

is the size of the pi-Sylow subgroup G(i) of Gx. Then it holds that pli
i = |G(i)| for

each i, 16i6k. In this case h(〈x; w; pi; li〉) = h(〈x; w; pi; mi〉) = Li(x) for all 16i6k
(Claim 4.8.3) and h(〈x; w; pi; m〉) = 0 for all m ¿ li. So the gap corresponding to this
particular set of guesses for li, 16i6k, is

∏k
i=1 Li(x)ei . On the other hand, consider

the case when one of the guessed values li is di�erent from the corresponding correct
value mi. For that index i, if li ¿ mi then h(〈x; w; pi; li〉) = 0, and if li ¡ mi then∏ei

m=li+1(Li(x)−h(〈x; w; pi; m〉)) = 0 since Li(x)−h(〈x; w; pi; mi〉) = 0, and mi¿li+1.
Thus, for an incorrect guess l1; l2; : : : ; lk , the corresponding gap X will take the value
0. Therefore, the gap X evaluates to 0 (for each of the n=� paths into which it branches
at line 9) if the guess l1; l2; : : : ; lk is incorrect. On the other hand, the gap X evaluates
to

∏k
i=1 L

ei
i for the unique correct guess m1; m2; : : : ; mk . Thus, the total gap produced

under the correct guess of m1; m2; : : : ; mk is |Gx| · (n=|Gx|) ·
∏k

i=1 L
ei
i which is n

∏k
i=1 L

ei
i .

Hence the claim.

Now to complete the proof of the theorem, we note that it is easy to design a gap
machine which on input 1|x| produces a gap n

∏k
i=1 L

ei
i , where n = |Br(|x|)|. So by

Theorem 3.2 and Claim 4.8.4, it follows that L is low for PP.

It is routine to verify that the above proof relativizes. We state a relativized version
of the theorem.

Theorem 4.9. Let L⊆�∗. Then every language that is abelian group-de�nable rela-
tive to L is low for PP(L).

4.3. Applications of the main theorem

Now we shall see the consequence of the above theorem on the PP-lowness for
several abelian black-box group problems. These problems are well-studied in
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computational group theory [3, 5, 9, 15]. Here we would like to remark that in an-
other paper [1], we actually show that all the problems we are considering here are
low for PP, using proof methods speci�c to these problems. What is interesting here
is that Theorem 4.8 places various abelian group problems in a uniform framework,
and their PP-lowness follows directly.
The problems that we are interested in are Membership Testing, Group Factorization,

Coset Intersection and Double Coset Factorization. We formally de�ne these problems
for general black-box groups, over an arbitrary group family B. We are interested in
the case when these groups are abelian. Let c be a polynomial.

Bounded-Membership def= {〈0m; S; g〉|S ⊆Bm; g ∈ Bm; |S|6c(m); g ∈ 〈S〉},
Membership def= {〈0m; S; g〉|S ⊆Bm; g ∈ Bm; g ∈ 〈S〉},
Group-Factorization def= {(0m; S1; S2; g) | S1; S2⊆Bm and g ∈ 〈S1〉〈S2〉},
Coset-Intersection def= {(0m; S1; S2; g) | S1; S2⊆Bm and 〈S1〉g ∩ 〈S2〉 6= ∅}.
Double-Coset-Membership def= {(0m; S1; S2; g; x) | S1; S2⊆Bm and g ∈ 〈S1〉x〈S2〉}.
We �rst show that Bounded-Membership for abelian groups over an arbitrary group

family B is abelian group-de�nable over a suitably chosen group family X and hence
low for PP. Then we show that Membership is polynomial time Turing reducible to
Bounded-Membership thereby implying that Membership is also low for PP.
For any integer r, let Z+r denote the additive group of integers modulo r. Let Z〈r;s〉

denote the product group Z+r × Z+r × · · · × Z+r , the product taken s times. De�ne the
group family X = {Z〈r;s〉}r;s¿1.

Proposition 4.10. Let B be a group family. Then Bounded-Membership for abelian
groups is abelian group-de�nable over X.

Proof. Let 〈0m; {g1; g2; : : : ; gk}; g〉 be an instance of Bounded-Membership such that
k6c(m). By de�nition of group families, we know that |Bm| = n is computable in
time polynomial in m. So Bounded-Membership is in NP via the polynomial-time
relation R = {〈x; e1; e2; : : : ; ec(m)〉|ei ∈ Z+n for 16i6c(m) and ge1

1 g
e2
2 : : : gek

k = x}. Now,
SolR(x) = {〈e1; e2; : : : ; ec(m)〉 | ge1

1 g
e2
2 : : : gek

k = x and ei ∈ Z+n for 16i6c(m)}. It is easy
to see that this set is a right coset of the group G = {〈e1; e2; : : : ; ec(m)〉 | ge1

1 g
e2
2 : : : gek

k =
id} which is a subgroup of Z〈n;c(m)〉.

It immediately follows from Theorem 4.8 and Proposition 4.10 that the restricted
abelian group membership problem is low for PP. We state this as next corollary.

Corollary 4.11. Let B be a group family. Then Bounded-Membership for abelian
groups is low for PP.

Proposition 4.12. Let B be a group family. Then Membership is polynomial-time
Turing reducible to Bounded-Membership.

Proof. Let (0m; S; g) be an instance of the Membership. From the de�nition of group
families there is a polynomial p such that |Bm|62p(|x|). Using the following polynomial-
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time oracle machine with the Bounded-Membership as oracle, we can construct a gen-
erator set for A whose size is at most p(|x|), and thereby reduce Membership to
Bounded-Membership.

REDUCE (0m; {g1; : : : ; gk}; g)
1 X ← {g1}
2 for i ← 2 to k
3 do if (0m; X; gi) 6∈ Bounded-Membership
4 then X ← X ∪ {gi}
5 if (0m; X; g) ∈ Bounded-Membership
6 then Accept

It is easy to see that the set X computed by the for-loop in the above algorithm
generates 〈{g1; : : : ; gk}〉. Furthermore, in the above algorithm, each time we include an
element in X , by Lagrange’s theorem, the size of the corresponding subgroup generated
by it at least doubles in cardinality. Since |Bm|62p(|x|), it must hold that |X |6p(|x|).
This completes the proof.

The next corollary immediately follows.

Corollary 4.13. Let B be a group family. Then Membership for abelian groups is
low for PP.

Theorem 4.14. Let B be a group family. Then the problems Group-Factorization,
Coset-Intersection and Double-Coset-Intersection with respect to B, for abelian groups
are low for PP.

Proof. It su�ces to prove the result for Group-Factorization since Coset-Intersection
and Double-Coset-Intersection are many-one reducible to Group-Factorization.
Consider an instance (0m; S1; S2; g) of Group-Factorization for abelian groups with

respect to the group family B, where 〈S1〉 and 〈S2〉 are abelian subgroups of Bm.
Consider the relation R = {(g1; S1; S2; g) | g1 ∈ 〈S1〉 and g−11 g ∈ 〈S2〉}. It is easy to

see that R ∈ P(Memb), for, the polynomial time machine has to query Membership
for (0n; S1; g1) and (0n; S2; g−11 g). Further, observe that corresponding to the relation
R, the solution set of an instance x = (0m; S1; S2; g) is SolR(x) = {g1 | g1 ∈ 〈S1〉 and
g−11 g ∈ 〈S2〉}. It is easy to see that SolR(x) is a right coset of 〈S1〉 ∩ 〈S2〉 which is
also an abelian group since 〈S1〉 and 〈S2〉 are abelian. This implies that Group-Fact is
abelian group-de�nable relative to Membership. So from Theorem 4.9, it follows that
Group-Factorization is low for PP(Membership). But from Corollary 4.13 we know
that PP(Membership) = PP. Hence the theorem.

5. Counting solutions

In this section we prove upper bounds on the complexity of the exact counting
problem corresponding to group-de�nable languages. We show that, for group-de�nable
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languages, counting the number of solutions can be done in FPAM and particularly, for
group-de�nable languages over the group family is SYM, counting the number of
solutions can be done in FPNP with parallel queries.
As an intermediate result, we prove upper bounds on the following generalization

of a problem posed by Ho�man [14]: Given a polynomial-time membership test for
a subgroup H of a group G (presented by a set of generators), to compute a set of
generators for H . An interesting aspect of this problem is that it is a kind of converse
of the usual problem of membership testing in a group presented by a generator set.
Before we prove these results, we state some results from [3].

Theorem 5.1 (Babai [3]). Let B = {Bm}m¿1 be a group family. Then the following
sets are in AM.
1. Non-Membership def= {(0m; S; g) | S ⊆Bm; g ∈ Bm and g 6∈ 〈S〉}.
2. Order Veri�cation def= {(0m; S; n) | S ⊆Bm and |〈S〉| = n}.

The following theorem gives an upper bound on computing a generator set for a
group for which membership testing can be done in polynomial time.

Theorem 5.2. Let B = {Bm}¿m be a group family. Let H ¡ Bm. Then if a polynomial-
time membership test is given for H , there is an FPAM algorithm for computing a
generator set for H . If B = SYM, then there is an FPNP algorithm for computing a
generator set for H .

Proof. Let B = {Bm}¿m be a group family. Let A be the be de�ned as A =
{〈0m; S; g′〉 | ∃y ∈ �p(m)−|g′|; S ⊆H ; g′y ∈ H and g′y 6∈ 〈S〉} where p is a poly-
nomial. First, we have the following easy claim.

Claim 5.2.1. A ∈ AM. In particular, if the group family B = SYM, A ∈ NP.

Proof. First note that A ∈ ∃AM. This follows from part 1 of Theorem 5.1 and the fact
that membership in H can be done in polynomial-time. Since ∃AM = AM, the claim
follows for general black-box groups. In the case when the group family is SYM, the
claim follows from the fact that, membership testing for permutation groups can be
done in polynomial-time [12] (and hence non-membership testing also).

We next give a description of a deterministic algorithm which uses A to compute a
generator set of H . Since, in general A ∈ AM and in the case when the group family
is SYM A ∈ NP, the theorem follows.

GEN-COMPUTE(0m)
1 S ← {e}
2 while 〈0m; S; �〉 ∈ A
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3 do g← �
4 while 〈0m; S; g〉 ∈ A
5 if 〈0m; S; g1〉 ∈ A
6 g← g1
7 else g← g0
8 end-while (*Computes g ∈ H − 〈S〉 by pre�x search*)
9 S ← S ∪ {g}
10 end-while (* Computes a generator set for Gx*)
11 returns S

We shall see that the above algorithm computes a generator set for H in polynomial
time. Note that the algorithm returns a set S when the while-loop condition of line-
2 is violated. From the de�nition of the language A, this happens when 〈S〉 = H .
This shows that the algorithm computes a generator set for H . Note that after each
iteration of while-loop of line-2, an element g ∈ G but not in 〈S〉 is constructed and
added to the set S before the next iteration. From Lagrange’s theorem, it follows that
|〈S ∪ g〉|¿2|〈S〉| if g 6∈ S. So it follows that the while-loop of line-2 will be iterated
at most p(m) times where p(m) is the length of strings encoding the elements of Bm.

As an interesting corollary to the above theorem, we prove upper bound on the com-
plexity of the following problem: Given two black-box groups A and B presented by
a generator set; compute a generator set for the group A ∩ B.

Corollary 5.3. Let B = {Bm}¿m be a group family. Let A; B⊆Bm, then a generator
set for 〈A〉 ∩ 〈B〉 can be computed in FPAM.

Proof (Sketch). De�ne a language L as follows: A = {〈0m; S; A; B; g′〉 | ∃y ∈ �p(m)−|g′|;
S ⊆〈A〉∩〈B〉; g′y ∈ 〈A〉∩〈B〉 and g′y 6∈ 〈S〉}. (Notice that the only di�erence between
the language A in the above theorem and L is that the H in the de�nition of A is
replaced by 〈A〉 ∩ 〈B〉 in L.)
In [5] it is shown that the problem of membership testing in a black-box group

presented by a generator set is in NP. So from part 1 of Theorem 5.1, it follows that
Membership Testing is in NP∩co-AM. From [17] we know that NP∩co-AM is low for
AM. So it follows that the language L ∈ AM . So in the algorithm GEN-COMOPUTE,
if we replace the language A by L, we will get an algorithm for computing a generator
set for 〈A〉 ∩ 〈B〉.

We use the algorithm GEN-COMPUTE to compute the #P function corresponding
to a group-de�nable language. We do it in two parts. In the �rst part we show that
for any input in the language, a generator set for the group whose right coset is the
solution set, can be computed in FPAM. In the next part, we use this set of generators
to compute the corresponding #P function.
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Lemma 5.4. Let L be group-de�nable over a group family B, via a polynomial-time
computable relation R. For an input x∈L, let Gx ¡Bm denote the group whose right
coset is SolR(x). Then a set of generators for Gx can be computed in FPAM.

Proof (Sketch). The algorithm is very similar to the algorithm GEN-COMPUTE. On
an input x, using pre�x search, �rst compute a solution y ∈ SolR(x). This can be done
in FPL⊆FPNP (since L ∈ NP). Now, membership in Gx can be done in polynomial
time, since checking whether an element g is in Gx is equivalent to checking whether
yg ∈ SolR(x), which can be done in polynomial time. From Theorem 5.2 it follows
that a generator set can be computed in FPAM.

Theorem 5.5. Let L be a group-de�nable language over the group family, via the
polynomial-time computable relation R. Then, ∀x; |SolR(x)| can be computed in FPAM.

Proof. Given x ∈ �∗ as input, we describe an FPAM algorithm for computing the #P
function |SolR(x)|. Let p be the polynomial such that SolR(x)⊆�p(|x|). For input x, let
Gx ¡ Bm denote the group whose right coset is SolR(x). Note that |Gx| = |SolR(x)|.
Let B′ = {〈n; S〉 |n is the order of the group 〈S〉}. The corresponding pre�x language
B is de�ned as: B = {〈m; S〉 | ∃n ∈ �6(p(|x|)−|m|)mn is the order of the group 〈S〉}.
From part 2 of Theorem 5.1 and the fact that ∃AM = AM, it follows that B ∈ AM .
Now we give an algorithm EXACT-COUNT, which on input x, �rst simulates the FPAM

of Theorem 5.4 to �rst compute a generator set for Gx and then using the language B
as oracle, computes |Gx| in polynomial time.

EXACT-COUNT(x)
1 Simulating the algorithm in Theorem 5.4 compute a generator set for Gx in FPAM

2 m← �
3 while 〈m; S〉 ∈ B
4 do if 〈m1; S〉 ∈ B
5 then m← m1
6 else m← m0
7 end-while (* Computes |Gx| by pre�x search*)
8 return m

From the description of the algorithm, it is clear that it computes the order of Gx

in polynomial time using a language in AM.

The above theorem along with Toda’s theorem [18]that PH⊆P#P yield the fol-
lowing corollary which states that counting the number of solutions of instances of
group-de�nable languages cannot be #P-complete unless the polynomial-time hierarchy
collapses.
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Corollary 5.6. Let L be a group-de�nable language over the group family B, w.r.t.
a polynomial-time computable relation R. Then, if the function f(x) = |SolR(x)| is
#P-complete then PH⊆PAM.

Next, we observe that in the special case where the group family is SYM, Theorem5.5
can be improved to get an FPNP|| algorithm (polynomial-time machine which makes par-
allel queries to an NP set) to compute the #P function. We omit the proof which is
essentially the same as that of Mathon’s result [16] that the number of isomorphisms
between two graphs can be computed in polynomial time with parallel queries to GI.

Theorem 5.7. Let L be a group-de�nable language over SYM with respect to a
polynomial-time relation R. Then ∀x, | SolR(x) | can be computed in FPNP|| .
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