57,510 research outputs found

    Theoretical constraints in the design of multivariable control systems

    Get PDF
    The research being performed under NASA Grant NAG1-1361 involves a more clear understanding and definition of the constraints involved in the pole-zero placement or assignment process for multiple input, multiple output systems. Complete state feedback to more than a single controller under conditions of complete controllability and observability is redundant if pole placement alone is the design objective. The additional feedback gains, above and beyond those required for pole placement can be used for eignevalue assignment or zero placement of individual closed loop transfer functions. Because both poles and zeros of individual closed loop transfer functions strongly affect the dynamic response to a pilot command input, the pole-zero placement problem is important. When fewer controllers than degrees of freedom of motion are available, complete design freedom is not possible, the transmission zeros constrain the regions of possible pole-zero placement. The effect of transmission zero constraints on the design possibilities, selection of transmission zeros and the avoidance of producing non-minimum phase transfer functions is the subject of the research being performed under this grant

    A Study on Fault Tolerant Wide-Area Controller Design to Damp Inter-Area Oscillations in Power Systems

    Get PDF
    Due to increased power supply demand, power system oscillations has become a major concern to have stable and secure system operation. One of the major concern in a power system is to damp inter-area oscillations. Lack of proper damping of oscillations may limit power transfer capability and blackouts. Power system stabilizer is used to damp local oscillations but not efficient to damp inter-area oscillations due to less observability of wide-area signals. Wide-Area Measurement Systems is used to overcome this issue and damp inter-area modes to an adequate level. In order to select feedback signals and controller location, wide-area loop selection method using geometrical measure approach is performed. However, while obtaining local and remote signals, a time-delay is introduced that may degrade the performance of system or may lead to instability. Two configurations are defined depending on feedback i.e. synchronous and non-synchronous feedback and modeled with 2nd order Pade approximation. The controller is synthesized based on H8 mixed sensitivity method with regional pole placement for a 4 machine 11 bus power system. It can be found that WDC damps out oscillations quickly and improves performance. Next problem considered is to design a controller when there is a sudden loss of remote signal. A conventional control (CC) method is used to design controller considering a local signal always available and a comparison is made in plants performance for normal and faulty conditions. It is found that conventional control method degrades performance in faulty situation and may lead to instability. To address this problem, a passive fault tolerant control (FTC) method is used where an iterative procedure is used and found that the system maintains adequate stability even in faulty conditions. For FTC method, the control effort required was more compared to CC method but FTC provides acceptable performance than CC controller

    Disaster-Resilient Control Plane Design and Mapping in Software-Defined Networks

    Full text link
    Communication networks, such as core optical networks, heavily depend on their physical infrastructure, and hence they are vulnerable to man-made disasters, such as Electromagnetic Pulse (EMP) or Weapons of Mass Destruction (WMD) attacks, as well as to natural disasters. Large-scale disasters may cause huge data loss and connectivity disruption in these networks. As our dependence on network services increases, the need for novel survivability methods to mitigate the effects of disasters on communication networks becomes a major concern. Software-Defined Networking (SDN), by centralizing control logic and separating it from physical equipment, facilitates network programmability and opens up new ways to design disaster-resilient networks. On the other hand, to fully exploit the potential of SDN, along with data-plane survivability, we also need to design the control plane to be resilient enough to survive network failures caused by disasters. Several distributed SDN controller architectures have been proposed to mitigate the risks of overload and failure, but they are optimized for limited faults without addressing the extent of large-scale disaster failures. For disaster resiliency of the control plane, we propose to design it as a virtual network, which can be solved using Virtual Network Mapping techniques. We select appropriate mapping of the controllers over the physical network such that the connectivity among the controllers (controller-to-controller) and between the switches to the controllers (switch-to-controllers) is not compromised by physical infrastructure failures caused by disasters. We formally model this disaster-aware control-plane design and mapping problem, and demonstrate a significant reduction in the disruption of controller-to-controller and switch-to-controller communication channels using our approach.Comment: 6 page

    Genetic programming for the automatic design of controllers for a surface ship

    Get PDF
    In this paper, the implementation of genetic programming (GP) to design a contoller structure is assessed. GP is used to evolve control strategies that, given the current and desired state of the propulsion and heading dynamics of a supply ship as inputs, generate the command forces required to maneuver the ship. The controllers created using GP are evaluated through computer simulations and real maneuverability tests in a laboratory water basin facility. The robustness of each controller is analyzed through the simulation of environmental disturbances. In addition, GP runs in the presence of disturbances are carried out so that the different controllers obtained can be compared. The particular vessel used in this paper is a scale model of a supply ship called CyberShip II. The results obtained illustrate the benefits of using GP for the automatic design of propulsion and navigation controllers for surface ships

    Optimum Weight Selection Based LQR Formulation for the Design of Fractional Order PI{\lambda}D{\mu} Controllers to Handle a Class of Fractional Order Systems

    Full text link
    A weighted summation of Integral of Time Multiplied Absolute Error (ITAE) and Integral of Squared Controller Output (ISCO) minimization based time domain optimal tuning of fractional-order (FO) PID or PI{\lambda}D{\mu} controller is proposed in this paper with a Linear Quadratic Regulator (LQR) based technique that minimizes the change in trajectories of the state variables and the control signal. A class of fractional order systems having single non-integer order element which show highly sluggish and oscillatory open loop responses have been tuned with an LQR based FOPID controller. The proposed controller design methodology is compared with the existing time domain optimal tuning techniques with respect to change in the trajectory of state variables, tracking performance for change in set-point, magnitude of control signal and also the capability of load disturbance suppression. A real coded genetic algorithm (GA) has been used for the optimal choice of weighting matrices while designing the quadratic regulator by minimizing the time domain integral performance index. Credible simulation studies have been presented to justify the proposition.Comment: 6 pages, 5 figure
    corecore