103,009 research outputs found

    Stability Yields Sublinear Time Algorithms for Geometric Optimization in Machine Learning

    Get PDF
    In this paper, we study several important geometric optimization problems arising in machine learning. First, we revisit the Minimum Enclosing Ball (MEB) problem in Euclidean space ?^d. The problem has been extensively studied before, but real-world machine learning tasks often need to handle large-scale datasets so that we cannot even afford linear time algorithms. Motivated by the recent developments on beyond worst-case analysis, we introduce the notion of stability for MEB, which is natural and easy to understand. Roughly speaking, an instance of MEB is stable, if the radius of the resulting ball cannot be significantly reduced by removing a small fraction of the input points. Under the stability assumption, we present two sampling algorithms for computing radius-approximate MEB with sample complexities independent of the number of input points n. In particular, the second algorithm has the sample complexity even independent of the dimensionality d. We also consider the general case without the stability assumption. We present a hybrid algorithm that can output either a radius-approximate MEB or a covering-approximate MEB, which improves the running time and the number of passes for the previous sublinear MEB algorithms. Further, we extend our proposed notion of stability and design sublinear time algorithms for other geometric optimization problems including MEB with outliers, polytope distance, one-class and two-class linear SVMs (without or with outliers). Our proposed algorithms also work fine for kernels

    New Set of Codes for the Maximum-Likelihood Decoding Problem

    Get PDF
    The maximum-likelihood decoding problem is known to be NP-hard for general linear and Reed-Solomon codes. In this paper, we introduce the notion of A-covered codes, that is, codes that can be decoded through a polynomial time algorithm A whose decoding bound is beyond the covering radius. For these codes, we show that the maximum-likelihood decoding problem is reachable in polynomial time in the code parameters. Focusing on bi- nary BCH codes, we were able to find several examples of A-covered codes, including two codes for which the maximum-likelihood decoding problem can be solved in quasi-quadratic time.Comment: in Yet Another Conference on Cryptography, Porquerolle : France (2010

    Topological Stability of Kinetic kk-Centers

    Get PDF
    We study the kk-center problem in a kinetic setting: given a set of continuously moving points PP in the plane, determine a set of kk (moving) disks that cover PP at every time step, such that the disks are as small as possible at any point in time. Whereas the optimal solution over time may exhibit discontinuous changes, many practical applications require the solution to be stable: the disks must move smoothly over time. Existing results on this problem require the disks to move with a bounded speed, but this model is very hard to work with. Hence, the results are limited and offer little theoretical insight. Instead, we study the topological stability of kk-centers. Topological stability was recently introduced and simply requires the solution to change continuously, but may do so arbitrarily fast. We prove upper and lower bounds on the ratio between the radii of an optimal but unstable solution and the radii of a topologically stable solution---the topological stability ratio---considering various metrics and various optimization criteria. For k=2k = 2 we provide tight bounds, and for small k>2k > 2 we can obtain nontrivial lower and upper bounds. Finally, we provide an algorithm to compute the topological stability ratio in polynomial time for constant kk

    Approximation Algorithm for Line Segment Coverage for Wireless Sensor Network

    Full text link
    The coverage problem in wireless sensor networks deals with the problem of covering a region or parts of it with sensors. In this paper, we address the problem of covering a set of line segments in sensor networks. A line segment ` is said to be covered if it intersects the sensing regions of at least one sensor distributed in that region. We show that the problem of finding the minimum number of sensors needed to cover each member in a given set of line segments in a rectangular area is NP-hard. Next, we propose a constant factor approximation algorithm for the problem of covering a set of axis-parallel line segments. We also show that a PTAS exists for this problem.Comment: 16 pages, 5 figures
    • …
    corecore