53,181 research outputs found

    The complexity of tangent words

    Full text link
    In a previous paper, we described the set of words that appear in the coding of smooth (resp. analytic) curves at arbitrary small scale. The aim of this paper is to compute the complexity of those languages.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Manifold Optimization Over the Set of Doubly Stochastic Matrices: A Second-Order Geometry

    Get PDF
    Convex optimization is a well-established research area with applications in almost all fields. Over the decades, multiple approaches have been proposed to solve convex programs. The development of interior-point methods allowed solving a more general set of convex programs known as semi-definite programs and second-order cone programs. However, it has been established that these methods are excessively slow for high dimensions, i.e., they suffer from the curse of dimensionality. On the other hand, optimization algorithms on manifold have shown great ability in finding solutions to nonconvex problems in reasonable time. This paper is interested in solving a subset of convex optimization using a different approach. The main idea behind Riemannian optimization is to view the constrained optimization problem as an unconstrained one over a restricted search space. The paper introduces three manifolds to solve convex programs under particular box constraints. The manifolds, called the doubly stochastic, symmetric and the definite multinomial manifolds, generalize the simplex also known as the multinomial manifold. The proposed manifolds and algorithms are well-adapted to solving convex programs in which the variable of interest is a multidimensional probability distribution function. Theoretical analysis and simulation results testify the efficiency of the proposed method over state of the art methods. In particular, they reveal that the proposed framework outperforms conventional generic and specialized solvers, especially in high dimensions

    A Tutorial on Fisher Information

    Get PDF
    In many statistical applications that concern mathematical psychologists, the concept of Fisher information plays an important role. In this tutorial we clarify the concept of Fisher information as it manifests itself across three different statistical paradigms. First, in the frequentist paradigm, Fisher information is used to construct hypothesis tests and confidence intervals using maximum likelihood estimators; second, in the Bayesian paradigm, Fisher information is used to define a default prior; lastly, in the minimum description length paradigm, Fisher information is used to measure model complexity

    Computing the vertices of tropical polyhedra using directed hypergraphs

    Get PDF
    We establish a characterization of the vertices of a tropical polyhedron defined as the intersection of finitely many half-spaces. We show that a point is a vertex if, and only if, a directed hypergraph, constructed from the subdifferentials of the active constraints at this point, admits a unique strongly connected component that is maximal with respect to the reachability relation (all the other strongly connected components have access to it). This property can be checked in almost linear-time. This allows us to develop a tropical analogue of the classical double description method, which computes a minimal internal representation (in terms of vertices) of a polyhedron defined externally (by half-spaces or hyperplanes). We provide theoretical worst case complexity bounds and report extensive experimental tests performed using the library TPLib, showing that this method outperforms the other existing approaches.Comment: 29 pages (A4), 10 figures, 1 table; v2: Improved algorithm in section 5 (using directed hypergraphs), detailed appendix; v3: major revision of the article (adding tropical hyperplanes, alternative method by arrangements, etc); v4: minor revisio

    Tropicalizing the simplex algorithm

    Full text link
    We develop a tropical analog of the simplex algorithm for linear programming. In particular, we obtain a combinatorial algorithm to perform one tropical pivoting step, including the computation of reduced costs, in O(n(m+n)) time, where m is the number of constraints and n is the dimension.Comment: v1: 35 pages, 7 figures, 4 algorithms; v2: improved presentation, 39 pages, 9 figures, 4 algorithm
    corecore