16 research outputs found

    The Complexity of Manipulative Attacks in Nearly Single-Peaked Electorates

    Full text link
    Many electoral bribery, control, and manipulation problems (which we will refer to in general as "manipulative actions" problems) are NP-hard in the general case. It has recently been noted that many of these problems fall into polynomial time if the electorate is single-peaked (i.e., is polarized along some axis/issue). However, real-world electorates are not truly single-peaked. There are usually some mavericks, and so real-world electorates tend to merely be nearly single-peaked. This paper studies the complexity of manipulative-action algorithms for elections over nearly single-peaked electorates, for various notions of nearness and various election systems. We provide instances where even one maverick jumps the manipulative-action complexity up to \np-hardness, but we also provide many instances where a reasonable number of mavericks can be tolerated without increasing the manipulative-action complexity.Comment: 35 pages, also appears as URCS-TR-2011-96

    The Complexity of Fully Proportional Representation for Single-Crossing Electorates

    Full text link
    We study the complexity of winner determination in single-crossing elections under two classic fully proportional representation rules---Chamberlin--Courant's rule and Monroe's rule. Winner determination for these rules is known to be NP-hard for unrestricted preferences. We show that for single-crossing preferences this problem admits a polynomial-time algorithm for Chamberlin--Courant's rule, but remains NP-hard for Monroe's rule. Our algorithm for Chamberlin--Courant's rule can be modified to work for elections with bounded single-crossing width. To circumvent the hardness result for Monroe's rule, we consider single-crossing elections that satisfy an additional constraint, namely, ones where each candidate is ranked first by at least one voter (such elections are called narcissistic). For single-crossing narcissistic elections, we provide an efficient algorithm for the egalitarian version of Monroe's rule.Comment: 23 page

    An Atypical Survey of Typical-Case Heuristic Algorithms

    Full text link
    Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.Comment: This article is currently scheduled to appear in the December 2012 issue of SIGACT New

    Manipulating Districts to Win Elections: Fine-Grained Complexity

    Full text link
    Gerrymandering is a practice of manipulating district boundaries and locations in order to achieve a political advantage for a particular party. Lewenberg, Lev, and Rosenschein [AAMAS 2017] initiated the algorithmic study of a geographically-based manipulation problem, where voters must vote at the ballot box closest to them. In this variant of gerrymandering, for a given set of possible locations of ballot boxes and known political preferences of nn voters, the task is to identify locations for kk boxes out of mm possible locations to guarantee victory of a certain party in at least ll districts. Here integers kk and ll are some selected parameter. It is known that the problem is NP-complete already for 4 political parties and prior to our work only heuristic algorithms for this problem were developed. We initiate the rigorous study of the gerrymandering problem from the perspectives of parameterized and fine-grained complexity and provide asymptotically matching lower and upper bounds on its computational complexity. We prove that the problem is W[1]-hard parameterized by k+nk+n and that it does not admit an f(n,k)â‹…mo(k)f(n,k)\cdot m^{o(\sqrt{k})} algorithm for any function ff of kk and nn only, unless Exponential Time Hypothesis (ETH) fails. Our lower bounds hold already for 22 parties. On the other hand, we give an algorithm that solves the problem for a constant number of parties in time (m+n)O(k)(m+n)^{O(\sqrt{k})}.Comment: Presented at AAAI-2

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    Single-Peaked Consistency for Weak Orders Is Easy

    Full text link
    In economics and social choice single-peakedness is one of the most important and commonly studied models for preferences. It is well known that single-peaked consistency for total orders is in P. However in practice a preference profile is not always comprised of total orders. Often voters have indifference between some of the candidates. In a weak preference order indifference must be transitive. We show that single-peaked consistency for weak orders is in P for three different variants of single-peakedness for weak orders. Specifically, we consider Black's original definition of single-peakedness for weak orders, Black's definition of single-plateaued preferences, and the existential model recently introduced by Lackner. We accomplish our results by transforming each of these single-peaked consistency problems to the problem of determining if a 0-1 matrix has the consecutive ones property.Comment: In Proceedings TARK 2015, arXiv:1606.0729
    corecore