17,528 research outputs found

    Improved Approximation Algorithms for Computing k Disjoint Paths Subject to Two Constraints

    Full text link
    For a given graph GG with positive integral cost and delay on edges, distinct vertices ss and tt, cost bound CZ+C\in Z^{+} and delay bound DZ+D\in Z^{+}, the kk bi-constraint path (kkBCP) problem is to compute kk disjoint stst-paths subject to CC and DD. This problem is known NP-hard, even when k=1k=1 \cite{garey1979computers}. This paper first gives a simple approximation algorithm with factor-(2,2)(2,2), i.e. the algorithm computes a solution with delay and cost bounded by 2D2*D and 2C2*C respectively. Later, a novel improved approximation algorithm with ratio (1+β,max{2,1+ln1β})(1+\beta,\,\max\{2,\,1+\ln\frac{1}{\beta}\}) is developed by constructing interesting auxiliary graphs and employing the cycle cancellation method. As a consequence, we can obtain a factor-(1.369,2)(1.369,\,2) approximation algorithm by setting 1+ln1β=21+\ln\frac{1}{\beta}=2 and a factor-(1.567,1.567)(1.567,\,1.567) algorithm by setting 1+β=1+ln1β1+\beta=1+\ln\frac{1}{\beta}. Besides, by setting β=0\beta=0, an approximation algorithm with ratio (1,O(lnn))(1,\, O(\ln n)), i.e. an algorithm with only a single factor ratio O(lnn)O(\ln n) on cost, can be immediately obtained. To the best of our knowledge, this is the first non-trivial approximation algorithm for the kkBCP problem that strictly obeys the delay constraint.Comment: 12 page

    Maximum Skew-Symmetric Flows and Matchings

    Full text link
    The maximum integer skew-symmetric flow problem (MSFP) generalizes both the maximum flow and maximum matching problems. It was introduced by Tutte in terms of self-conjugate flows in antisymmetrical digraphs. He showed that for these objects there are natural analogs of classical theoretical results on usual network flows, such as the flow decomposition, augmenting path, and max-flow min-cut theorems. We give unified and shorter proofs for those theoretical results. We then extend to MSFP the shortest augmenting path method of Edmonds and Karp and the blocking flow method of Dinits, obtaining algorithms with similar time bounds in general case. Moreover, in the cases of unit arc capacities and unit ``node capacities'' the blocking skew-symmetric flow algorithm has time bounds similar to those established in Even and Tarjan (1975) and Karzanov (1973) for Dinits' algorithm. In particular, this implies an algorithm for finding a maximum matching in a nonbipartite graph in O(nm)O(\sqrt{n}m) time, which matches the time bound for the algorithm of Micali and Vazirani. Finally, extending a clique compression technique of Feder and Motwani to particular skew-symmetric graphs, we speed up the implied maximum matching algorithm to run in O(nmlog(n2/m)/logn)O(\sqrt{n}m\log(n^2/m)/\log{n}) time, improving the best known bound for dense nonbipartite graphs. Also other theoretical and algorithmic results on skew-symmetric flows and their applications are presented.Comment: 35 pages, 3 figures, to appear in Mathematical Programming, minor stylistic corrections and shortenings to the original versio
    corecore