102 research outputs found

    Visualization of pentatopic meshes

    Get PDF
    We propose a simple tool to visualize 4D unstructured pentatopic meshes. The method slices unstructured 4D pentatopic meshes (fields) with an arbitrary 3D hyperplane and obtains a conformal 3D unstructured tetrahedral representation of the mesh (field) slice ready to explore with standard 3D visualization tools. The results show that the method is suitable to visually explore 4D unstructured meshes. This capability has facilitated devising our 4D bisection method, and thus, we think it might be useful when devising new 4D meshing methods. Furthermore, it allows visualizing 4D scalar fields, which is a crucial feature for our space-time application

    Convergence and optimality of the adaptive Morley element method

    Full text link
    This paper is devoted to the convergence and optimality analysis of the adaptive Morley element method for the fourth order elliptic problem. A new technique is developed to establish a quasi-orthogonality which is crucial for the convergence analysis of the adaptive nonconforming method. By introducing a new parameter-dependent error estimator and further establishing a discrete reliability property, sharp convergence and optimality estimates are then fully proved for the fourth order elliptic problem

    Adaptive vertex-centered finite volume methods for general second-order linear elliptic PDEs

    Full text link
    We prove optimal convergence rates for the discretization of a general second-order linear elliptic PDE with an adaptive vertex-centered finite volume scheme. While our prior work Erath and Praetorius [SIAM J. Numer. Anal., 54 (2016), pp. 2228--2255] was restricted to symmetric problems, the present analysis also covers non-symmetric problems and hence the important case of present convection

    Adaptive Spectral Galerkin Methods with Dynamic Marking

    Get PDF
    The convergence and optimality theory of adaptive Galerkin methods is almost exclusively based on the D\"orfler marking. This entails a fixed parameter and leads to a contraction constant bounded below away from zero. For spectral Galerkin methods this is a severe limitation which affects performance. We present a dynamic marking strategy that allows for a super-linear relation between consecutive discretization errors, and show exponential convergence with linear computational complexity whenever the solution belongs to a Gevrey approximation class.Comment: 20 page

    Convergence and Optimality of Adaptive Mixed Finite Element Methods

    Full text link
    The convergence and optimality of adaptive mixed finite element methods for the Poisson equation are established in this paper. The main difficulty for mixed finite element methods is the lack of minimization principle and thus the failure of orthogonality. A quasi-orthogonality property is proved using the fact that the error is orthogonal to the divergence free subspace, while the part of the error that is not divergence free can be bounded by the data oscillation using a discrete stability result. This discrete stability result is also used to get a localized discrete upper bound which is crucial for the proof of the optimality of the adaptive approximation

    Strict bounding of quantities of interest in computations based on domain decomposition

    Full text link
    This paper deals with bounding the error on the estimation of quantities of interest obtained by finite element and domain decomposition methods. The proposed bounds are written in order to separate the two errors involved in the resolution of reference and adjoint problems : on the one hand the discretization error due to the finite element method and on the other hand the algebraic error due to the use of the iterative solver. Beside practical considerations on the parallel computation of the bounds, it is shown that the interface conformity can be slightly relaxed so that local enrichment or refinement are possible in the subdomains bearing singularities or quantities of interest which simplifies the improvement of the estimation. Academic assessments are given on 2D static linear mechanic problems.Comment: Computer Methods in Applied Mechanics and Engineering, Elsevier, 2015, online previe
    • …
    corecore