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Abstract—We propose a simple tool to visualize 4D unstruc-
tured pentatopic meshes. The method slices unstructured 4D
pentatopic meshes (fields) with an arbitrary 3D hyperplane and
obtains a conformal 3D unstructured tetrahedral representation
of the mesh (field) slice ready to explore with standard 3D
visualization tools. The results show that the method is suitable
to visually explore 4D unstructured meshes. This capability has
facilitated devising our 4D bisection method, and thus, we think
it might be useful when devising new 4D meshing methods.
Furthermore, it allows visualizing 4D scalar fields, which is a
crucial feature for our space-time applications.

Keywords—Visualization, 4D mesh, pentatopic mesh
I. EXTENDED ABSTRACT

In the last years, there has been an emerging interest
to generate [1], [2], refine [3], [4], [5], [6], [7], [8], and
adapt [9] 4D meshes. In our case, the need to simulate
unsteady problems using full space-time (3D space + 1D time)
discretizations with unstructured methods prompts our interest.
We think that one key issue that is hampering to devise, check,
and illustrate new 4D meshing approaches is the lack of a
natural approach to visualize 4D meshes. We aim to provide a
preliminary solution to this issue, by providing a simple tool
to visualize 4D unstructured pentatopic meshes.

Our method is devised to exploit existent 3D visualization
software which provides mature user interfaces to interact in
real-time with 2D projections of the 3D meshes. To exploit
these interfaces, we propose to slice unstructured 4D pen-
tatopic meshes (fields) with an arbitrary 3D hyperplane and
obtain a conformal 3D unstructured tetrahedral representation
of the mesh (field) slice that is ready to be read with standard
3D visualization tools. Recently, a method to visualize 4D pen-
tatopic meshes has been outlined in [9]. The main difference
with our approach is that in [9], the resulting 3D visualization
mesh is composed of polyhedra instead of tetrahedra.

We devise the method as follows. First, given a 4D
unstructured pentatopic mesh and a hyperplane, we compute
element-by-element the intersection of the hyperplane with the
element edges. We only consider the intersections that lead
to a 4D point, and we ignore all the singular intersections
leading to either the null set or the full edge. Then, for the
current element, we check if the resulting set of selected points
generates a 3D polyhedron. If the points in the hyperplane
define a volume, we compute the coordinates of the 4D
points expressed in terms of a 3D orthonormal base of the
hyperplane. Then, we compute a Delaunay tetrahedralization
of the resulting 3D points. Finally, we store a link between
the intersection edge points and a unique edge identifier. If the
intersection points do not define a volume, we continue with
the following element. Using the link between the intersection
edge points and the unique edge identifiers, we can now

merge all the local Delaunay tetrahedralizations to obtain a 3D
conformal unstructured tetrahedral mesh, without duplicates of
the edge points, that represents the 3D slice of the 4D mesh.

II. RESULTS

We consider the gravitational potential of two masses,
defined by Equation (1), such that the positions of the masses
evolve in time.
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Initially, at time ¢ = O the two masses are located at different
points of the z-axis. Then, the masses will move along the
z-axis with constant velocity and opposite direction until they
arrive at the same position at ¢ = 1, see Equation (2).

p1(t) = p1 + (0,0,0t), p; € R3 ®
Pa(t) = pa — (0,0,vt), pp € R3

Hence, the isosurface of the gravitational potential will evolve
from two connected components merging into a single com-
ponent. For a fixed isovalue the gravitational potential defines
an implicit 3D manifold embedded into a 4D space (3D
space + 1D time). We adapt a 4D pentatopic mesh [7] of a
hypercube to capture the 3D embedded manifold defined by
the isovalue V(Z,t) ~ —10. Then, we obtain a 4D pentatopic
mesh composed of 16798112 pentatopes and 879778 nodes.
To select the elements to refine first, we compute the elements
that intersect the manifold. Then, from those elements, we
compute the manifold curvature of each one using the Hessian
of V(Z,t) and we select to refine the 10% of the elements with
higher curvature. Therefore, the obtained mesh will be refined
close to the isosurface and, in particular, where the curvature
is higher. The elements near to the isosurface will be smaller
than the far one, which will be coarser.

Figure 1 shows three slices at different times. Each time
slice is represented using a 3D mesh in the (z, x, y) space. The
figures on the left, Figures 1(a), 1(c) and 1(e), illustrate the
adapted mesh at times ¢ = 0, ¢ = 0.5 and ¢ = 1 respectively.
In the right hand side, Figures 1(b), 1(d) and 1(f), illustrate the
adapted mesh with the associated isosurface at times ¢t = 0,
t = 0.5 and t = 1 respectively. As we expected, the mesh is
more refined close to the isosurface and is coarser far from
it. We are showing three different slices in time, but since the
presented visualization is a post-process algorithm and we are
working with a single 4D pentatopic mesh, we can make as
many slices as we require. Figure 2 illustrates a slice with the
hyperplane x = 0.5. We obtain a 3D space-time configuration
in which vertical axis is the time axis. We can see the two
initial connected components at the bottom of the mesh, and
how they merge to a single connected component.
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Fig. 1.  Different slices in time of an adapted 4D pentatopic mesh are
presented. Figures (a) and (b) corresponds to the time slice ¢ = 0.0. Figures
(c) and (d) corresponds to the time slice ¢ = 0.5. Finally, Figures (e) and (f)
corresponds to the time slice ¢ = 1.0.
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Fig. 2. A slice of an adapted 4D pentatopic mesh with the hyperplane x = 0.5

is presented. We obtain the 3D space-time mesh (z,y,t), where we can see
the time evolution of the isosurface defined by the gravitational potential.

III. CONCLUSIONS

Our preliminary results show that our approach is suitable
to visually explore 4D unstructured meshes with the help of

3D visualization interactive packages This capability has facil-
itated developing, debugging, and checking our 4D bisection
method, and thus, we think it might be useful when devising
new 4D meshing methods. Furthermore, it allows visualizing
4D scalar fields, which is a crucial feature for our space-time
applications.
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