19,104 research outputs found

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    Search Tracker: Human-derived object tracking in-the-wild through large-scale search and retrieval

    Full text link
    Humans use context and scene knowledge to easily localize moving objects in conditions of complex illumination changes, scene clutter and occlusions. In this paper, we present a method to leverage human knowledge in the form of annotated video libraries in a novel search and retrieval based setting to track objects in unseen video sequences. For every video sequence, a document that represents motion information is generated. Documents of the unseen video are queried against the library at multiple scales to find videos with similar motion characteristics. This provides us with coarse localization of objects in the unseen video. We further adapt these retrieved object locations to the new video using an efficient warping scheme. The proposed method is validated on in-the-wild video surveillance datasets where we outperform state-of-the-art appearance-based trackers. We also introduce a new challenging dataset with complex object appearance changes.Comment: Under review with the IEEE Transactions on Circuits and Systems for Video Technolog
    • …
    corecore