21,568 research outputs found

    Necessary conditions for tractability of valued CSPs

    Full text link
    The connection between constraint languages and clone theory has been a fruitful line of research on the complexity of constraint satisfaction problems. In a recent result, Cohen et al. [SICOMP'13] have characterised a Galois connection between valued constraint languages and so-called weighted clones. In this paper, we study the structure of weighted clones. We extend the results of Creed and Zivny from [CP'11/SICOMP'13] on types of weightings necessarily contained in every nontrivial weighted clone. This result has immediate computational complexity consequences as it provides necessary conditions for tractability of weighted clones and thus valued constraint languages. We demonstrate that some of the necessary conditions are also sufficient for tractability, while others are provably not.Comment: To appear in SIAM Journal on Discrete Mathematics (SIDMA

    A Galois Connection for Weighted (Relational) Clones of Infinite Size

    Full text link
    A Galois connection between clones and relational clones on a fixed finite domain is one of the cornerstones of the so-called algebraic approach to the computational complexity of non-uniform Constraint Satisfaction Problems (CSPs). Cohen et al. established a Galois connection between finitely-generated weighted clones and finitely-generated weighted relational clones [SICOMP'13], and asked whether this connection holds in general. We answer this question in the affirmative for weighted (relational) clones with real weights and show that the complexity of the corresponding valued CSPs is preserved

    A complexity dichotomy for poset constraint satisfaction

    Get PDF
    In this paper we determine the complexity of a broad class of problems that extends the temporal constraint satisfaction problems. To be more precise we study the problems Poset-SAT(Φ\Phi), where Φ\Phi is a given set of quantifier-free ≤\leq-formulas. An instance of Poset-SAT(Φ\Phi) consists of finitely many variables x1,…,xnx_1,\ldots,x_n and formulas ϕi(xi1,…,xik)\phi_i(x_{i_1},\ldots,x_{i_k}) with ϕi∈Φ\phi_i \in \Phi; the question is whether this input is satisfied by any partial order on x1,…,xnx_1,\ldots,x_n or not. We show that every such problem is NP-complete or can be solved in polynomial time, depending on Φ\Phi. All Poset-SAT problems can be formalized as constraint satisfaction problems on reducts of the random partial order. We use model-theoretic concepts and techniques from universal algebra to study these reducts. In the course of this analysis we establish a dichotomy that we believe is of independent interest in universal algebra and model theory.Comment: 29 page

    Galois correspondence for counting quantifiers

    Full text link
    We introduce a new type of closure operator on the set of relations, max-implementation, and its weaker analog max-quantification. Then we show that approximation preserving reductions between counting constraint satisfaction problems (#CSPs) are preserved by these two types of closure operators. Together with some previous results this means that the approximation complexity of counting CSPs is determined by partial clones of relations that additionally closed under these new types of closure operators. Galois correspondence of various kind have proved to be quite helpful in the study of the complexity of the CSP. While we were unable to identify a Galois correspondence for partial clones closed under max-implementation and max-quantification, we obtain such results for slightly different type of closure operators, k-existential quantification. This type of quantifiers are known as counting quantifiers in model theory, and often used to enhance first order logic languages. We characterize partial clones of relations closed under k-existential quantification as sets of relations invariant under a set of partial functions that satisfy the condition of k-subset surjectivity. Finally, we give a description of Boolean max-co-clones, that is, sets of relations on {0,1} closed under max-implementations.Comment: 28 pages, 2 figure
    • …
    corecore