14 research outputs found

    Energy efficiency of error correction on wireless systems

    Get PDF
    Since high error rates are inevitable to the wireless environment, energy-efficient error-control is an important issue for mobile computing systems. We have studied the energy efficiency of two different error correction mechanisms and have measured the efficiency of an implementation in software. We show that it is not sufficient to concentrate on the energy efficiency of error control mechanisms only, but the required extra energy consumed by the wireless interface should be incorporated as well. A model is presented that can be used to determine an energy-efficient error correction scheme of a minimal system consisting of a general purpose processor and a wireless interface. As an example we have determined these error correction parameters on two systems with a WaveLAN interfac

    Optimal Worst-Case QoS Routing in Constrained AWGN Channel Network

    Get PDF
    In this paper, we extend the optimal worst-case QoS routing algorithm and metric definition given in [1]. We prove that in addition to the q-ary symmetric and q-ary erasure channel model, the necessary and sufficient conditions defined in [2] for the Generalized Dijkstra's Algorithm (GDA) can be used with a constrained non-negative-mean AWGN channel. The generalization allowed the computation of the worst-case QoS metric value for a given edge weight density. The worst-case value can then be used as the routing metric in networks where some nodes have error correcting capabilities. The result is an optimal worst-case QoS routing algorithm that uses the Generalized Dijkstra's Algorithm as a subroutine with a polynomial time complexity of O(V^3)

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    On multicast flow control for heterogeneous receivers

    Full text link

    On the use of erasure codes in unreliable data networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 62-64).Modern data networks are approaching the state where a large number of independent and heterogeneous paths are available between a source node and destination node. In this work, we explore the case where each path has an independent level of reliability characterized by a probability of path failure. Instead of simply repeating the message across all the paths, we use the path diversity to achieve reliable transmission of messages by using a coding technique known as an erasure correcting code. We develop a model of the network and present an analysis of the system that invokes the Central Limit Theorem to approximate the total number of bits received from all the paths. We then optimize the number of bits to send over each path in order to maximize the probability of receiving a sufficient number of bits at the destination to reconstruct the message using the erasure correcting code. Three cases are investigated: when the paths are very reliable, when the paths are very unreliable, and when the paths have a probability of failure within an interval surrounding 0.5. We present an overview of the mechanics of an erasure coding process applicable to packet-based transactions. Finally, as avenues for further research, we discuss several applications of erasure coding in networks that have only a single path between source and destination: for latency reduction in interactive web sessions; as a transport layer for critical messaging; and an application layer protocol for high-bandwidth networks.by Salil Parikh.S.M

    Adaptive Low-Complexity Erasure-Correcting Code-Based Protocols for QoS-Driven Mobile Multicast Services Over Wireless Networks

    Full text link

    Multicast Services for Multimedia Collaborative Applications

    Get PDF
    This work aims at providing multicast services for multimedia collaborative applications over large inter-networks such as the Internet. Multimedia collaborative applications are typically of small group size, slow group membership dynamics, and awareness of participants\u27 identities and locations. Moreover, they usually consist of several components such as audio, video, shared whiteboard, and single user application sharing engines that collectively help make the collaboration session successful. Each of these components has its demands from the communication layer that may differ from one component to another. This dissertation identifies the overall characteristics of multimedia collaborative applications and their individual components. It also determines the service requirements of the various components from the communication layer. Based on the analysis done in the thesis, new techniques of multicast services that are more suitable for multimedia collaborative applications are introduced. In particular, the focus will be on multicast address management and connection control, routing, congestion and flow control, and error control. First, we investigate multicast address management and connection control and provide a new technique for address management based on address space partitioning. Second, we study the problem of multicast routing and introduce a new approach that fits the real time nature of multimedia applications. Third, we explore the problem of congestion and flow control and introduce a new mechanism that takes into consideration the heterogeneity within the network and within the processing capabilities of the end systems. Last, we exploit the problem of error control and present a solution that supports various levels of error control to the different components within the collaboration session. We present analytic as well as simulation studies to evaluate our work, which show that our techniques outperform previous ones

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments

    Fountain codes: performance analysis and optimization

    Get PDF
    The fountain coding principle provides a framework for efficient and reliable data transmission techniques over erasure channels, such as file transmission over the Internet. This thesis presents topics related to the optimisation and performance analysis for different settings where fountain coding methods are applied. We start by reviewing the fountain coding principle on which our own contributions are based. Strategies for both elastic and streaming traffic are considered. The coding schemes are typically modelled as stochastic processes and we analyse them using well-known tools, such as Markov chains and fixed-point iteration. Some of the schemes realise the principles of an ideal digital fountain, while the other sacrifice some characteristics, such as time-independence and the statistical equivalence of the encoded packets. The description of our own work is divided into two parts. The first part begins by addressing the optimisation of the degree distribution of LT coding, the first universal fountain coding method, for small file sizes. We present exact analysis for LT codes of very small size with some novel results. A simulation based method is presented for the analysis and optimisation of longer codes, up to hundreds of source blocks. We further present a method in which a random linear fountain code is divided into parts and conduct a performance analysis of the system. We propose and analyse two different strategies to overcome the performance degradation caused by the division. The first part ends with the description and optimisation of a systematic, sequential coding scheme in which the sender makes greedy choices concerning the repair packet structure on the basis of his belief about the state of the receiver. We present repair packet degree sequences which result in a low required overhead. In the second part we will address the problem of achieving a low residual erasure probability for streaming traffic using packet erasure correction. The methods are based on a sliding window. Four different methods are presented differing in how the repair packets are constructed. These codes further differ in the repair packet sending strategy; one code always sends a repair packet deterministically after a window movement, while the others send the repair packets probabilistically. We conclude that methods inspired by fountain coding provide efficient, yet simple, coding strategies for implementing data transfer in many settings
    corecore